Skip to main content
Log in

Atomistic investigation of ablation of amorphous polystyrene under femtosecond laser pulse

无定形聚苯乙烯飞秒激光烧蚀的原子级研究

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In the present work we elucidate the thermodynamic mechanisms of femtosecond (fs) laser ablation of amorphous polystyrene by means of molecular dynamics (MD) simulations. The effects of extrinsic parameter of laser pulse intensity and intrinsic parameter of molecular architecture on the laser ablation are further studied. Simulation results show that the laser ablation-induced polymeric material removal is achieved by evaporation from the surface and expansion within the bulk. Furthermore, inter-chain sliding and intra-chain change also play important roles in the microscopic deformation of the material. It is found that both the laser pulse intensity and the arrangement of phenyl groups have significant influence on the fs laser ablation of polystyrene.

概要

研究意义

  1. 1)

    飞秒激光烧蚀是制备激光约束聚变快点火聚苯乙烯微球靶丸的一个重要手段

  2. 2)

    研究聚苯乙烯飞秒激光烧蚀机理对于提高微球表面小孔加工精度具有重要的理论意义与实用价值。

创新要点

  1. 1)

    建立了全原子模型的聚苯乙烯飞秒激光烧蚀的分子动力学仿真模型

  2. 2)

    研究了飞秒激光烧蚀中聚苯乙烯的微观变形机理及与烧蚀加工结果的关系

  3. 3)

    研究了外部激光强度和内部分子结构对聚苯乙烯飞秒激光烧蚀的影响规律。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gamaly E G, Rode A V, Luther-Davies B. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys Plasmas, 2002, 9: 949–957

    Article  ADS  Google Scholar 

  2. Jiang L, Tsai H L. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse. J Heat Mass Transfer, 2005, 48: 487–499

    Article  MATH  Google Scholar 

  3. Sahin R, Simsek E, Akturk S. Nanoscale patterning of graphene through femtosecond laser ablation. Appl Phys Lett, 2014, 104: 053118

    Article  ADS  Google Scholar 

  4. O’Connell G, Donnelly T, Lunney J G. Nanoparticle plume dynamics in femtosecond laser ablation of gold. Appl Phys A, 2014, doi: 10..1007/s00339-013-8209-y

    Google Scholar 

  5. Lee B L P, Jeon H J, Wang A J, et al. Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds. Acta Biomater, 2012, 8: 2648–2658

    Article  Google Scholar 

  6. Pham D, Tonge L, Cao J N, et al. Effects of polymer properties on laser ablation behavior. Smart Mater Struct, 2002, 11: 668–674

    Article  ADS  Google Scholar 

  7. Lippert T. Laser application of polymers. In: Advances in Polymer Science. Berlin: Springer-Verlag, 2004. 51–246

    Google Scholar 

  8. Suriano R, Kuznetsov A, Eaton S M, et al. Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Appl Surf Sci, 2011, 257: 6243–6250

    Article  ADS  Google Scholar 

  9. Fernández-Pradas J M, Florian C, Caballero-Lucas F, et al. Femtosecond laser ablation of polymethyl-methacrylate with high focusing control. Appl Surf Sci, 2013, 278: 185–189

    Article  ADS  Google Scholar 

  10. Kodama R, Norreys P A, Mima K, et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature, 2001, 412: 798–802

    Article  ADS  Google Scholar 

  11. Homma H, Kodota H, Hosokawa H. Recent developments in fabrication of new conceptual gold cone and machining of polystyrene shell for fast ignition target. Fusion Sci Tech, 2011, 59: 276–278

    Google Scholar 

  12. Nagai K, Yang H, Norimatsu T. Fabrication of aerogel capsule, bromine-doped capsule and modified gold cone in modified target for the Fast Ignition Realization Experiment (FIREX) project. Nucl Fution, 2009, 49: 1–9

    Google Scholar 

  13. Reif J. Basic physics of femtosecond laser ablation. In: Miotello A, Ossi P M, eds. Laser-Surface Interactions for New Materials Production. Berlin/Heidelberg: Springer, 2000. 19–41

    Google Scholar 

  14. Perez D, Lewis L J. Molecular-dynamics study of ablation of solids under femtosecond laser pulses. Phys Rev B, 2003, 67: 184102

    Article  ADS  Google Scholar 

  15. Leveugle E, Zhigilei L V. Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation. J Appl Phys, 2007, 102: 074914

    Article  ADS  Google Scholar 

  16. Wang Y, Xu X, Zhang L. Molecular dynamics simulation of ultrafast laser ablation of fused silica film. Appl Phys A, 2008, 92: 849–852

    Article  ADS  Google Scholar 

  17. Upadhyay A K, Inogamov N A, Rethfeld B, et al. Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold. Phys Rev B, 2008, 78: 045437

    Article  ADS  Google Scholar 

  18. Sonntag S, Paredes C T, Roth J, et al. Molecular dynamics simulations of cluster distribution from femtosecond laser ablation in aluminum. Appl Phys A, 2011, 104: 559–565

    Article  ADS  Google Scholar 

  19. Stuart S J, Harrison J A, Tutein A B. A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys, 2000, 112: 6472–6486

    Article  ADS  Google Scholar 

  20. Du K, Tang Y J, Zhang J J, et al. Velocity-dependent nanoscratching of amorphous polystyrene. Curr Nanosci, 2013, 9: 153–158

    ADS  Google Scholar 

  21. Bityurin N, Luk’yanchuk B S, Hong M H, et al. Models for laser ablation of polymers. Chem Rev, 2003, 103: 519–552

    Article  Google Scholar 

  22. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117: 1–19

    Article  ADS  MATH  Google Scholar 

  23. Humphrey W, Dalke A, Schulten K. VMD-visual molecular dynamics. J Mol Graphics, 1996, 14: 33–38

    Article  Google Scholar 

  24. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling Simul Mater Sci Eng, 2010, 18: 015012

    Article  ADS  Google Scholar 

  25. Itina T E, Zhigilei L V, Garrison B J. Matrix-assisted pulsed laser evaporation of polymeric materials: A molecular dynamics study. Nucl Instrum Methods Phys Res B, 2011, 180: 238–244

    Article  ADS  Google Scholar 

  26. Chiang W S, Lin C H, Nandan B, et al. Molecular architecture effect on the self-assembly behavior of comb-coil block copolymers displaying. Macromolecules, 2008, 41: 8138–8147

    Article  ADS  Google Scholar 

  27. Wu J Y, He J Y, Odegard G M, et al. Effect of chain architecture on the compression behavior of nanoscale polyethylene particles. Nanoscale Res Lett, 2013, 8: 322

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunJie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Song, C., Zhang, J. et al. Atomistic investigation of ablation of amorphous polystyrene under femtosecond laser pulse. Sci. China Phys. Mech. Astron. 58, 1–7 (2015). https://doi.org/10.1007/s11433-014-5587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5587-x

Keywords

关键词

Navigation