Skip to main content

Advertisement

Log in

Flexible solid-state supercapacitors based on carbon aerogel and some electrolyte polymer gels

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Various energy devices with enhanced performance can be fabricated based on nanostructured carbons and conducting polymeric electrolytes. For instance, supercapacitors are attractive energy storage devices due to their high power density. In the present work, supercapacitors are fabricated using synthesized carbon aerogel as an active electrode in combination with different electrolytes. Electrolytes are important components in supercapacitors since their electrochemical properties directly influence the performance and the internal resistance of the capacitor. Aqueous electrolytes of KOH, H2SO4, H3PO4 and six different gel electrolytes PVA/KCL, PVA/H3PO4, PVA/H2SO4, PVA/KOH, and PVA/KOH–KCl–K3[Fe(CN)6] and PVA/KNO3 are used for making flexible supercapacitors. The electrochemical properties of the different electrolytes are compared using cyclic voltammetry, galvanostatic charge/discharge curves and impedance spectroscopy. The capacitor containing PVA–KOH–KCl–K3[Fe(CN)6] electrolyte membrane with a weight ratio of 60:23:23:4 shows the highest specific capacitance of 520 F g−1 and a long cycling life with retention of 98.1% after 1000 cycles, also its specific capacitance increases with increasing the temperature from 25 to 70 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Rouf, Graphene-based ultracapacitors. Nano Lett 8, 3498–3502 (2008)

    Article  ADS  Google Scholar 

  2. H.P. Wu, D.W. He, Y.S. Wang, M. Fu, Z.L. Liu, J.G. Wang, H.T. Wang, Graphene as the electrode material in supercapacitors, 8th international vacuum electron sources conference and nanocarbon, IEEE, pp 465–466 (2010)

  3. G. Xiong, C. Meng, R.G. Reifenberger, P.P. Irazoqui, T.S. Fisher, A review of graphene-based electrochemical microsupercapacitors. Electroanal 26, 3051 (2014)

    Article  Google Scholar 

  4. Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 11, 10628–10643 (2016)

    Article  Google Scholar 

  5. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  ADS  Google Scholar 

  6. R.F. Service, New ‘supercapacitor’ promises to pack more electrical punch. Sci. Mater. Sci. 313, 902 (2006)

    Google Scholar 

  7. A. Hammar, P. Venet, R. Lallemand, G. Coquery, G. Rojat, Study of accelerated aging of supercapacitors for transport applications. IEEE Trans. Ind. Electron. 57, 3972–3979 (2010)

    Article  Google Scholar 

  8. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730 (2015)

    Article  Google Scholar 

  9. R. Ramkumar, M.M. Sundaram, Electrochemical synthesis of polyaniline cross-linked NiMoO4 nanofibre dendrites for energy storage devices. New J. Chem. 40, 7456–7464 (2016)

    Article  Google Scholar 

  10. L. Bao, J. Zang, X. Li, Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett. 11, 1215–1220 (2011)

    Article  ADS  Google Scholar 

  11. X. Liu, G. Du, J. Zhu, Z. Zeng, X. Zhu, NiO/LaNiO3 film electrode with binder-free for high performance supercapacitor. Appl. Surf. Sci. 384, 92–98 (2016)

    Article  ADS  Google Scholar 

  12. D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, G.Q. Lu, Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance. Adv. Funct. Mater. 19, 1800–1809 (2009)

    Article  Google Scholar 

  13. K.-X. Sheng, Y.-X. Xu, C. Li, G.-Q. Shi, High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon. Mater. 26, 9–15 (2011)

    Article  Google Scholar 

  14. R.S. Dey, H.A. Hjuler, Q. Chi, Approaching the theoretical capacitance of graphene through copper foam integrated three-dimensional graphene networks. J. Mater. Chem. A 3, 6324–6329 (2015)

    Article  Google Scholar 

  15. Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010)

    Article  Google Scholar 

  16. L. Zhang, G. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 115, 17206–17212 (2011)

    Article  Google Scholar 

  17. J. Chen, K. Sheng, P. Luo, C. Li, G. Shi, Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv. Mater. 24, 4569–4573 (2012)

    Article  Google Scholar 

  18. X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 21, 6494–6497 (2011)

    Article  Google Scholar 

  19. Z.S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. Feng, K. M¨ullen, Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 24, 5130–5135 (2012)

    Article  Google Scholar 

  20. B.E. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications (Plenum Press, New York, 1999)

    Google Scholar 

  21. D. Kalpana, N.G. Renganathan, S. Pitchumani, A new class of alkaline polymer gel electrolyte for carbon aerogel supercapacitors. J. Power Sources 157, 621–623 (2006)

    Article  ADS  Google Scholar 

  22. X. Liu, T. Momma, T. Osaka, All-solid state electric double layer capacitor using polymer electrolyte and isotropic high density graphite electrodes. Chem. Lett. 25, 625–626 (1996)

    Article  Google Scholar 

  23. C. Huang, J. Zhang, N.P. Young, H.J. Snaith, P.S. Grant, Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications. Sci. Rep. 6, 25684 (1–15) (2016)

    Article  ADS  Google Scholar 

  24. M.G. Hosseini, E. Shahryar, Fabrication of novel solid-state supercapacitor using a Nafion polymer membrane with graphene oxide/multiwalled carbon nanotube/polyaniline. J. Solid State Electrochem. 21, 2833–2848 (2017)

    Article  Google Scholar 

  25. M. Genovese, H. Wu, A. Virya, J. Li, P. Shen, K. Lian, Ultrathin all-solid-state supercapacitor devices based on chitosan activated carbon electrodes and polymer electrolytes. Electrochim. Acta 273, 392–401 (2018)

    Article  Google Scholar 

  26. Y.L. Li, P.C. Li, B.J. Li, M.K. Gao, F.Y. Zhao, L. Shao, J.F. Chen, L.H. Li, All-solid-state flexible supercapacitors based on screen-printed graphene electrodes. Int. J. Electrochem. Sci. 12, 10567–10576 (2017)

    Google Scholar 

  27. C. Yanga, L. Zhanga, N. Hua, Z. Yanga, H. Wei, Y. Wang, Y. Zhanga, High-performance flexible all-solid-state supercapacitors based on densely-packed graphene/polypyrrole nanoparticle papers. Appl. Surface Sci. 387, 666–673 (2016)

    Article  ADS  Google Scholar 

  28. Z. Li, Z. Zhou, G. Yun, K. Shi, X. Lv, B. Yang, High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res. Lett. 8:473, 1–9 (2013)

    Google Scholar 

  29. N.A. Choudhury, S. Sampath, A.K. Shukla, Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors. J. Electrochem. Soc. 155, A74–A81 (2008)

    Article  Google Scholar 

  30. M. Rosi, F. Iskandar, M. Abdullah, Khairurrijal, hydrogel-polymer electrolytes based on polyvinyl alcohol and hydroxyethylcellulose for supercapacitor applications. Int. J. Electrochem. Sci. 9, 4251–4256 (2014)

    Google Scholar 

  31. Y.N. Sudhakar, M. Selvakumar, D.K. Bhat, Lithium salts doped biodegradable gel polymer electrolytes for supercapacitor application. J. Mater. Environ. Sci. 6, 1218–1227 (2015)

    Google Scholar 

  32. P. Sivakumar, M. Gunasekaran, M. Sasikumar, A. Jagadeesan, PVDF-HFP based porous polymer electrolyte for lithium battery applications. Inter. J. Sci. Res. 2, 2319–7064 (2013)

    Google Scholar 

  33. P.F.R. Ortega, J.P. C.Trigueiro, G.G. Silva, R.L. Lavall, Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid. Electrochim. Acta 188, 809–817 (2016)

    Article  Google Scholar 

  34. L. Nègre, B. Daffos, V. Turq, P.-L. Taberna, P. Simon, Ionogel-based solid-state supercapacitor operating over a wide range of temperature. Electrochim. Acta 206, 490–495 (2016)

    Article  Google Scholar 

  35. X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, H-TiO2@MnO2//H-TiO2 @C Core–Shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25, 267–272 (2013)

    Article  Google Scholar 

  36. Hu Ruofei, J. Zhao, R. Jiang, J. Zheng, Preparation of high strain polyaniline/polyvinyl alcohol composite and its applications in stretchable supercapacitor. J. Mater. Sci. Mater. Electron. 28, 14568–14574 (2017)

    Article  Google Scholar 

  37. T.S. Gaaz, A.B. Sulong, M.N. Akhtar, A.A.H. Kadhum, A.B. Mohamad, A.A. Al-Amiery, Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20, 22833–22847 (2015)

    Article  Google Scholar 

  38. C.Z. Meng, C.H. Liu, L.Z. Chen, C.H. Hu, S.S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10, 4025–4031 (2010)

    Article  ADS  Google Scholar 

  39. L.Y. Yuan, X.H. Lu, X. Xiao, T. Zhai, J.J. Dai, F.C. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C.G. Hu, Y.X. Tong, J. Zhou, Z.L. Wang, Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6, 656–661 (2012)

    Article  Google Scholar 

  40. B.G. Choi, J. Hong, W.H. Hong, P.T. Hammond, H. Park, Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5, 7205–7213 (2011)

    Article  Google Scholar 

  41. F.H. Meng, Y. Ding, Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv. Mater. 23, 4098–4102 (2011)

    Article  Google Scholar 

  42. A. Lewandowski, M. Zajder, E. Frackowiak, F. Beguin, Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochim. Acta 46, 2777–2780 (2001)

    Article  Google Scholar 

  43. H.-S. Nam, N.-L. Wu, K.-T. Lee, K.M. Kim, C.G. Yeom, L.R. Hepowit, J.M. Ko, J.-D. Kim, Electrochemical capacitances of a nanowire-structured MnO2 in polyacrylate-based gel electrolytes. J. Electrochem. Soc. 159, A899–A903 (2012)

    Article  Google Scholar 

  44. K.-T. Lee, N.-L. Wu, Manganese oxide electrochemical capacitor with potassium poly(acrylate) hydrogel electrolyte. J. Power Sources 179, 430–434 (2008)

    Article  ADS  Google Scholar 

  45. K. ZinHtut, M. Kim, E. Lee, G. Lee, S.H. Baeck, S.E. Shim, Biodegradable polymer-modified graphene/ polyaniline electrodes for supercapacitors. Synth. Metals 227, 61–67 (2017)

    Article  Google Scholar 

  46. G. Ma, J. Li, K. Sun, H. Peng, J. Mu, Z. Lei, High performance solid-state supercapacitor with PVA–KOH–K3[Fe(CN)6] gel polymer as electrolyte and separator. J. Power Sources 256, 281–287 (2014)

    Article  ADS  Google Scholar 

  47. C. Ramasamy, J. Palma del vel, M. Anderson, An activated carbon supercapacitor analysis by using a gel electrolyte of sodium salt-polyethylene oxide in an organic mixture solvent. J. Solid State Electrochem. 18, 2217–2223 (2014)

    Article  Google Scholar 

  48. H. Gao, F. Xiao, C.B. Ching, H. Duan, Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. ACS Appl. Mater. Interfaces 4, 7020–7026 (2012)

    Article  Google Scholar 

  49. A. Hany, M.A. Mousa, T. El-Essawy, Studies on AC electrical conductivity, dielectric properties and ion transport in PVA polymeric electrolytes. J. Basic Environ. Sci. 4, 298–304 (2017)

    Google Scholar 

  50. L. Lei, Z. Fu, Y. Yi, X. Huang, H. Tu, Ch Wang, Preparation and characterization of RF aerogel on UV irradiation method. J. Sol Gel. Sci. Technol. 72, 553–558 (2014)

    Article  Google Scholar 

  51. B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Kluwer Academic/Plenum Publishers, New York, 1999)

    Book  Google Scholar 

  52. L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13, 3135–3139 (2013)

    Article  ADS  Google Scholar 

  53. L.Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.L. Zhao, X. Lin, X. Xu, Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat. Commun. 4, 2923 (2013)

    Article  Google Scholar 

  54. R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang, Y. Lein, High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy 8, 231–237 (2014)

    Article  Google Scholar 

  55. R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang, Y. Lei, High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy 8, 231–237 (2014)

    Article  Google Scholar 

  56. B.E. Conway, W.G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electrochem. 7, 637–644 (2003)

    Article  Google Scholar 

  57. M.L. Verma, M. Minakshi, N.K. Singh, Structural and electrochemical properties of nanocomposite polymer electrolyte for electrochemical devices. Ind. Eng. Chem. Res. 53, 14993–15001 (2014)

    Article  Google Scholar 

  58. A.A. Łatoszyńska, G.Z. Źukowska, I.A. Rutkowska, P.-L. Taberna, P. Simon, P.J. Kulesza, W. Wieczorek, Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors. J. Power Sources 274, 1147–1154 (2015)

    Article  Google Scholar 

  59. J.B. Wagner, C. Wagner, Electrical conductivity measurements on cuprous halides. J. Chem. Phys. 26, 1597–1601 (1957)

    Article  ADS  Google Scholar 

  60. S. Bindu, M.S. Suresh, Measurement of bulk resistance of conducting polymer films in presence of rectifying contacts. Inter. J. Sci. Res. 4(8), 1–6 (2014). ISSN 2250-3153

    Google Scholar 

  61. L. Lai, H. Yang, L. Wang, B.K. Teh, J. Zhong, H. Chou, L. Chen, W. Chen, Z. Shen, R.S. Ruoff, J. Lin, Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano 6, 5941–5951 (2012)

    Article  Google Scholar 

  62. F. Yu, T. Wang, Z. Wen, H. Wang, High performance all-solid-state symmetric supercapacitor based on porous carbon made from a metal-organic framework compound. J. Power Source 364, 9–15 (2017)

    Article  ADS  Google Scholar 

  63. X. Sun, X. Zhang, H. Zhang, D. Zhang, Y. Ma, A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes. J. Solid State Electrochem. 16, 2597–2603 (2012)

    Article  Google Scholar 

  64. K. Wang, M. Xu, Y. Gu, Z. Gu, Q.H. Fan, Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes. J. Power Source 332, 180–186 (2016)

    Article  ADS  Google Scholar 

  65. H.T. Jeong, Y.R. Kim, B.C. Kim, Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes. J. Alloy Compds. 727, 721–727 (2017)

    Article  Google Scholar 

  66. P. Staiti, F. Lufrano, Nafion® and Fumapem® polymer electrolytes for the development of advanced solid-state supercapacitors. Electrochim. Acta 206, 432–439 (2016)

    Article  Google Scholar 

  67. X. Yang, L. Zhang, F. Zhang, T. Zhang, Y. Huang, Y. Chen, A high-performance all-solid-state supercapacitor with graphene-doped carbon material electrodes and a graphene oxide-doped ion gel electrolyte. Carbon 72, 381–386 (2014)

    Article  Google Scholar 

  68. D. Wang, L. Yu, B. He, L. Wang, A high-performance carbon–carbon(C/C) quasi-solid-state supercapacitor with conducting gel electrolyte. Int. J. Electrochem. Sci. 13, 2530–2543 (2018)

    Article  Google Scholar 

  69. B.S. Lalia, M. Alkaabi, R. Hashaikeh, Sulfated cellulose/polyvinyl alcohol composites as proton conducting electrolyte for capacitors. Energy Proc. 75, 1869–1874 (2015)

    Article  Google Scholar 

  70. P. Staitiz, F. Lufrano, Design, fabrication, and evaluation of a 1.5 F and 5 V prototype of solid-state electrochemical supercapacitor. J. Electrochem. Soc. 152, A617–A621 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khairy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 93 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esawy, T., Khairy, M., Hany, A. et al. Flexible solid-state supercapacitors based on carbon aerogel and some electrolyte polymer gels. Appl. Phys. A 124, 566 (2018). https://doi.org/10.1007/s00339-018-1967-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1967-9

Navigation