Skip to main content
Log in

X-ray attenuation characterisation of electrospun Bi2O3/PVA and WO3/PVA nanofibre mats as potential X-ray shielding materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrospun nanoparticles (Bi2O3 or WO3) filler/PVA nanofibre mats with different filler loadings (0–40 wt%) were successfully fabricated for X-ray shielding purpose via an electrospinning process. The X-ray attenuation ability of the prepared electrospun filler/PVA nanofibre mats were compared at various X-ray energies (8.64–25.20 keV) using X-ray fluorescent (XRF) unit. The dispersion of nanoparticles filler within PVA nanofibre mat was observed using scanning electron microscope (SEM). Results indicate that the X-ray attenuation ability of the filler/PVA nanofibre mats increased with the increment of filler loading excluded 40 wt% Bi2O3/PVA nanofibre mats. Nevertheless, the outcome shows that the electrospun Bi2O3/PVA nanofibre mat has higher X-ray attenuation ability than WO3/PVA nanofibre mat for all filler loadings. Moreover, only 10 wt% of Bi2O3 loading is needed in order to achieve similar X-ray attenuation ability as 40 wt% WO3/PVA nanofibre mats. Poor particle dispersion can be observed for ≥ 35 wt% Bi2O3/PVA compared to the WO3/PVA nanofibre mats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.G. Bennett, Radiat. Prot. Dosimetry. 36, 237–242 (1991)

    Article  Google Scholar 

  2. W. Huda, J.V. Atherton, D.E. Ware, Radiology 203(2), 417–422 (1997)

    Article  Google Scholar 

  3. M.P. Hiorns, A. Saini, P.J. Marsden, Br. J. Radiol. 79, 326–330 (2006)

    Article  Google Scholar 

  4. H. Fares, I. Jlassi, H. Elhouichet, M. Ferid, J. Non-Cryst. Solids 396–307, 1–7 (2014)

    Article  Google Scholar 

  5. L.W. Klein, D.L. Miller, S. Balter, W. Laskey, D. Haines, A. Norbash, M.A. Mauro, J.A. Goldstein, Radiology 250, 538–544 (2009)

    Article  Google Scholar 

  6. M.I. Sayyed, S.I. Qashou, Z.Y. Khattari, J. Alloy. Compd. 696, 632–638 (2017)

    Article  Google Scholar 

  7. A.K. Singh, R.K. Singh, B. Sharma, A.K. Tyagi, Radiat. Phys. Chem. 138, 9–15 (2017)

    Article  ADS  Google Scholar 

  8. N.Z. Noor Azman, A.S. Salim, J.H. Hazim, I.M. Low, J. Synchrotron. Radiat. 20, 741–748 (2013)

    Article  Google Scholar 

  9. K.J. Singh, S. Kaur, R.S. Kaundal, Radiat. Phys. Chem. 96, 153–157 (2014)

    Article  ADS  Google Scholar 

  10. L.D. Tijing, Y.C. Woo, M. Yao, J. Ren, H.K. Shon, in Comprehensive Membrane Science and Engineering, ed. by E. Drioli, L. Giorno, E. Fontananova. Electrospinning for Membrane Fabrication: Strategies and Applications, Chap 1.16, vol 1, 2nd edn. (Oxford, Elsevier, 2017), pp. 418–444

    Chapter  Google Scholar 

  11. S. Gautam, A.K. Dinda, N.C. Mishra, Mater. Sci. Eng. C 33(3), 1228–1235 (2013)

    Article  Google Scholar 

  12. X. Zhang, K. Tang, X. Zheng, J. Bionic Eng. 13(1), 143–149 (2016)

    Article  Google Scholar 

  13. L.A. Mercante, V.P. Scagion, F.L. Migliorini, L.H.C. Mattoso, D.S. Correa, Trends Anal. Chem. 91, 91–103 (2017)

    Article  Google Scholar 

  14. U. Dashdorj, M.K. Reyes, A.R. Unnithan, A.P. Tiwari, B. Tumurbaatar, C.H. Park, C.S. Kim, Int. J. Biol. Macromol. 80, 1–7 (2015)

    Article  Google Scholar 

  15. F. El Haber, G. Froyer, J. Univ. Chem. Technol. Metall. 43, 283–290 (2008)

    Google Scholar 

  16. B. Shanshan, S.H. Jayaram, E.A. Cherney, Annual report conference on electrical insulation and dielectric phenomena (CEIDP), 1–4, (2010)

  17. E.M. Çelikbilek, A.E. Ersundu, M.I. Sayyed, G. Lakshminarayana, S. Aydin, J. Alloy. Compd. 714, 278–286 (2017)

    Article  Google Scholar 

  18. A. Akhavan, F. Khoylou, E. Ataeivarjovi, Radiat. Phys. Chem. 138, 49–53 (2017)

    Article  ADS  Google Scholar 

  19. C.C. DeMerlis, D.R. Schoneker, Food Chem. Toxicol. 41, 319–326 (2003)

    Article  Google Scholar 

  20. A. Koski, K. Yim, S. Shivkumar, Mater. Lett. 58, 493–497 (2004)

    Article  Google Scholar 

  21. S.G. Gholap, J.P. Jog, M.V. Badiger, Polymer 45, 5863–5873 (2004)

    Article  Google Scholar 

  22. P. Supaphol, S. Chuangchote, J. Appl. Polym. Sci. 108(2), 969–978 (2008)

    Article  Google Scholar 

  23. S.O. Shamsan, M.I. Sayyed, D.K. Gaikwad, P.P. Pravina, Radiat. Phys. Chem. 148, 86–94 (2018)

    Article  ADS  Google Scholar 

  24. N.Z. Noor Azman, A.S. Salim, I.M. Low, Appl. Phys. A Mater. Sci. Process 110(1), 137–144 (2013)

    Article  ADS  Google Scholar 

  25. N. Chanthima, J. Kaewkhao, Ann. Nucl. Energy 55, 23–28 (2013)

    Article  Google Scholar 

  26. P. Sprawls, in The Physical Principles of Medical Imaging, 2nd edn. (Medical Physics Publishing, Madison, Wisconsin, 1995). ISBN. 0-944838-54-5

  27. K. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Ann. Nucl. Energy 38, 1438–1441 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded under Nippon Sheet Glass Foundation for Materials Science and Engineering, Short-Term Research Grant, USM, Malaysia (304/PFIZIK/6313249) and Fundamental Research Grant Scheme (FRGS), Malaysia (203/PFIZIK/6711564).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Zahirah Noor Azman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazlan, M.H., Jamil, M., Ramli, R.M. et al. X-ray attenuation characterisation of electrospun Bi2O3/PVA and WO3/PVA nanofibre mats as potential X-ray shielding materials. Appl. Phys. A 124, 497 (2018). https://doi.org/10.1007/s00339-018-1915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1915-8

Navigation