Skip to main content
Log in

Fabrication and Characterization of Fe(III) Metal-organic Frameworks Incorporating Polycaprolactone Nanofibers: Potential Scaffolds for Tissue Engineering

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Fabrication of nanofibrous scaffolds of biodegradable polymers provides a great premise for several biological applications. In this study, nanofibrous polycaprolactone (PCL) mats incorporating Fe-MOF (PCL/x%Fe-MOF, x=5, 10, 20) were fabricated by electrospinning technique. The Fe-MOFs were separately synthesized by the hydrothermal method and then were added to PCL solution for preparation of nanofibrous composites. The presence of Fe-MOF in the fibers was demonstrated by various methods including FT-IR (Fourier-transform infrared), PXRD (powder X-ray diffraction), EDS (energy dispersive X-ray spectroscopy) mapping, SEM (scanning electron microscope), and TEM (transmission electron microscope). In the FT-IR spectra of the nanocomposites, the characteristic bands for the pure PCL and Fe-MOF showed no significant change in their positions, suggesting a weak chemical interaction with each other, although they physically mixed uniformly. Nanofibrous structure of the as-prepared nanocomposites was confirmed by SEM and TEM images. The diameter of PCL nanofibers was measured to be 369 nm. Biological investigations indicated that the experimented scaffolds including PCL/5%Fe-MOF and PCL/10%Fe-MOF nanofibrous scaffolds provided appropriate surface and mechanical properties such as cellular biocompatibility, high porosity, chemical stability, and optimum fiber diameter for cell adhesion, viability, and proliferation compared with PCL and PCL/20%Fe-MOF nanocomposites. Indeed, our results demonstrated that percent of Fe-MOF in the composites played a significant role in cell attachment and viability. Also, according to the implantation studies, up to at least 4 weeks, none of the animals showed any inflammatory response. Totally, we can be claimed that the modified electrospun scaffolds have been developed for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Rieger, N. P. Birch, and J. D. Schiffman, J. Mater. Chem. B, 1, 4531 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. A. P. Rameshbabu, S. Datta, K. Bankoti, E. Subramani, K. Chaudhury, V. Lalzawmliana, S. K. Nandi, and S. Dhara, J. Mater. Chem. B, 6, 6767 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. A. M. Al-Enizi, M. M. Zagho, and A. A. Elzatahry, Nanomaterials, 8, 259 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  4. L. Weng and J. Xie, Curr. Pharm. Des., 21, 1944 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S.-F. Chou, D. Carson, and K. A. Woodrow, J. Controlled Release, 220, 584 (2015).

    Article  CAS  Google Scholar 

  6. R. S. Bhattarai, R. D. Bachu, S. H. S. Boddu, and S. Bhaduri, Pharmaceutics, 11, 5 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  7. M. Adeli-Sardou, M. M. Yaghoobi, M. Torkzadeh-Mahani, and M. Dodel, Int. J. Biol. Macromol., 124, 478 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. S. Stratton, N. B. Shelke, K. Hoshino, S. Rudraiah, and S. G. Kumbar, Bioactive Materials, 1, 93 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. J. Fang, H. Niu, T. Lin, and X. Wang, Chinese Sci. Bull., 53, 2265 (2008).

    Article  CAS  Google Scholar 

  10. Y. Li, N. Li, J. Ge, Y. Xue, W. Niu, M. Chen, Y. Du, P. X. Ma, and B. Lei, Biomaterials, 201, 68 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Y. Xi, J. Ge, Y. Guo, B. Lei, and P. X. Ma, ACS Nano, 12, 10772 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, Materials Today, 9, 40 (2006).

    Article  CAS  Google Scholar 

  13. S. Jiang, Y. Chen, G. Duan, C. Mei, A. Greiner, and S. Agarwal, Polym. Chem., 9, 2685 (2018).

    Article  CAS  Google Scholar 

  14. E. Malikmammadov, T. E. Tanir, A. Kiziltay, V. Hasirci, and N. Hasirci, J. Biomater. Sci. Polym. Ed., 29, 863 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. V. Guarino, G. Gentile, L. Sorrentino, and L. Ambrosio, Encyclopedia of Polym. Sci. Technol., pp.1–36 doi:10.1002/ 0471440264.pst658 (2017).

    Book  Google Scholar 

  16. X. Yang, X. Jiang, Y. Huang, Z. Guo, and L. Shao, ACS Appl. Mater. Interfaces, 9, 5590 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. K. Mondal and A. Sharma, RSC Adv., 6, 94595 (2016).

    Article  CAS  Google Scholar 

  18. P. Lu and Y.-L. Hsieh, ACS Appl. Mater. Interfaces, 2, 2413 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. J. L. C. Rowsell and O. M. Yaghi, Microporous Mesoporous Mater., 73, 3 (2004).

    Article  CAS  Google Scholar 

  20. S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M. P. Suh, and J. Reedijk, CrystEngComm, 14, 3001 (2012).

    Article  CAS  Google Scholar 

  21. W. T. Koo, J.-S. Jang, and I.-D. Kim, Chem., 5, 1938 (2019).

    Article  CAS  Google Scholar 

  22. Y.-Z. Chen, R. Zhang, L. Jiao, and H.-L. Jiang, Coord. Chem. Rev., 362, 1 (2018).

    Article  CAS  Google Scholar 

  23. H. Cai, Y.-L. Huang, and D. Li, Coord. Chem. Rev., 378, 207 (2019).

    Article  CAS  Google Scholar 

  24. W. Strzempek, E. Menaszek, and B. Gil, Microporous Mesoporous Mater., 280, 264 (2019).

    Article  CAS  Google Scholar 

  25. S. Javanbakht, M. Pooresmaeil, and H. Namazi, Carbohydr. Polym., 208, 294 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. R. Riccò, W. Liang, S. Li, J. J. Gassensmith, F. Caruso, C. Doonan, and P. Falcaro, ACS Nano, 12, 13 (2018).

    Article  PubMed  CAS  Google Scholar 

  27. T. Simon-Yarza, A. Mielcarek, P. Couvreur, and C. Serre, Adv. Mater., 30, 1707365 (2018).

    Article  CAS  Google Scholar 

  28. Y. Zhang, S. Yuan, X. Feng, H. Li, J. Zhou, and B. Wang, J. Am. Chem. Soc., 138, 5785 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. R. M. Abdelhameed and H. E. Emam, J. Colloid Interface Sci., 552, 494 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. H. E. Emam, H. N. Abdelhamid, and R. M. Abdelhameed, Dyes Pigment., 159, 491 (2018).

    Article  CAS  Google Scholar 

  31. H. E. Emam, O. M. Darwesh, and R. M. Abdelhameed, Colloids Surf. B, Biointerfaces, 165, 219 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. H. E. Emam and R. M. Abdelhameed, ACS Appl. Mater. Interfaces, 9, 28034 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. R. M. Abdelhameed, M. Rehan, and H. E. Emam, Carbohydr. Polym., 195, 460 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. P. A. Gunatillake and R. Adhikari, Eur. Cells Mater., 5, 1 (2003).

    Article  CAS  Google Scholar 

  35. K. Leus, C. Krishnaraj, L. Verhoeven, V. Cremers, J. Dendooven, R. K. Ramachandran, P. Dubruel, and P. Van Der Voort, J. Catal., 360, 81 (2018).

    Article  CAS  Google Scholar 

  36. J. Tian, Q. Liu, J. Shi, J. Hu, A. M. Asiri, X. Sun, and Y. He, Biosens. Bioelectron., 71, 1 (2015).

    Article  PubMed  CAS  Google Scholar 

  37. P. Horcajada, C. Serre, G. Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regi, M. Sebban, F. Taulelle, and G. Ferey, J. Am. Chem. Soc., 130, 6774 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. A. Samui, A. R. Chowdhuri, T. K. Mahto, and S. K. Sahu, RSC Adv., 6, 66385 (2016).

    Article  CAS  Google Scholar 

  39. R. Liang, F. Jing, L. Shen, N. Qin, and L. Wu, J. Hazard. Mater., 287, 364 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. S. N. Gorodzha, M. A. Surmeneva, and R. A. Surmenev, IOP Conference Series: Materials Science and Engineering, 98, 012024 (2015).

    Article  Google Scholar 

  41. A. Benkaddour, K. Jradi, S. Robert, and C. Daneault, Nanomaterials (Basel, Switzerland), 3, 141 (2013).

    Article  CAS  Google Scholar 

  42. S. Uma Maheshwari, V. K. Samuel, and N. Nagiah, Ceramics International, 40, 8469 (2014).

    Article  CAS  Google Scholar 

  43. Y. Zhang, H. Sun, H. Sadam, Y. Liu, and L. Shao, Chem. Eng. J., 371, 535 (2019).

    Article  CAS  Google Scholar 

  44. Y. Qian, Z. Zhang, L. Zheng, R. Song, and Y. Zhao, J. Nanomaterials, 2014, 7 (2014).

    Google Scholar 

  45. E. Correa, M. E. Moncada, and V. H. Zapata, Mater. Lett., 205, 155 (2017).

    Article  CAS  Google Scholar 

  46. E. Yilgör, M. Isik, C. K. Söz, and I. Yilgör, Polymer, 83, 138 (2016).

    Google Scholar 

  47. J. Hong, C. Chen, F. E. Bedoya, G. H. Kelsall, D. O’Hare, and C. Petit, Catal. Sci. Technol., 6, 5042 (2016).

    Article  CAS  Google Scholar 

  48. Y. Wu, H. Luo, and H. Wang, RSC Adv., 4, 40435 (2014).

    Article  CAS  Google Scholar 

  49. S. Hou, Y.-N. Wu, L. Feng, W. Chen, Y. Wang, C. Morlay, and F. Li, Dalton Transactions, 47, 2222 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. X. Jiang, S. Li, S. He, Y. Bai, and L. Shao, J. Mater. Chem. A, 6, 15064 (2018).

    Article  CAS  Google Scholar 

  51. X. Jiang, S. Li, Y. Bai, and L. Shao, J. Mater. Chem. A, 7, 10898 (2019).

    Article  CAS  Google Scholar 

  52. K. A. Khalil, H. Eltaleb, H. S. Abdo, S. S. Al-Deyab, and H. Fouad, J. Mater. Sci. Chem. Eng., 2, 31 (2014).

    CAS  Google Scholar 

  53. M. Li, J. Li, K. Li, Y. Zhao, Y. Zhang, D. Gosselink, and P. Chen, J. Power Sources, 240, 659 (2013).

    Article  CAS  Google Scholar 

  54. W. Liu, Z. Yan, X. Ma, T. Geng, H. Wu, and Z. Li, Materials, 11, 396 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  55. M. Mohamadali, S. Irani, M. Soleimani, and S. Hosseinzadeh, Polym. Adv. Technol., 28, 1078 (2017).

    Article  CAS  Google Scholar 

  56. R. K. Sadasivam, S. Mohiyuddin, and G. Packirisamy, ACS Omega, 2, 6556 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. R. Grall, T. Hidalgo, J. Delic, A. Garcia-Marquez, S. Chevillard, and P. Horcajada, J. Mater. Chem. B, 3, 8279 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, and C. Kreuz, Nat. Mater., 9, 172 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. M. R. Ramezani, Z. Ansari-Asl, E. Hoveizi, and A. R. Kiasat, Mater. Chem. Phys., 229, 242 (2019).

    Article  CAS  Google Scholar 

  60. S. Schmitt, J. Hümmer, S. Kraus, A. Welle, S. Grosjean, M. Hanke-Roos, A. Rosenhahn, S. Bräse, C. Wöll, and C. Lee-Thedieck, Adv. Funct. Mater., 26, 8455 (2016).

    Article  CAS  Google Scholar 

  61. X. Qi, Z. Chang, D. Zhang, K. J. Binder, S. Shen, Y. Y. S. Huang, Y. Bai, A. E. Wheatley, and H. Liu, Chem. Mater., 29, 8052 (2017).

    Article  CAS  Google Scholar 

  62. M. Chowdhury, J. Biomed. Mater. Res. Part A, 150, 1184 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support (Grant 1397) from the Shahid Chamran University of Ahvaz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Ansari-Asl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, M.R., Ansari-Asl, Z., Hoveizi, E. et al. Fabrication and Characterization of Fe(III) Metal-organic Frameworks Incorporating Polycaprolactone Nanofibers: Potential Scaffolds for Tissue Engineering. Fibers Polym 21, 1013–1022 (2020). https://doi.org/10.1007/s12221-020-9523-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9523-6

Keywords

Navigation