Skip to main content
Log in

Improved efficiency of ZnO hierarchical particle based dye sensitized solar cell by incorporating thin passivation layer in photo-anode

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Present article describes the DSSC performances of photo-anodes prepared using hydrothermal route derived ZnO particles having dissimilar morphologies i.e. simple micro-rod and nano-tips decorated micro-rod. The surface of nano-tips decorated micro-rod is uneven and patterned which facilitate more dye adsorption and better scattering of the incident light resulting superior photo-conversion efficiency (PCE) (η ~ 1.09%) than micro-rod ZnO (η ~ 0.86%). To further improve the efficiency of nano-tips decorated micro-rod ZnO based DSSC, thin passivation layer of ZnO is introduced in the corresponding photo-anode and a higher PCE (η ~ 1.29%) is achieved. The compact thin passivation layer here expedites the transportation of photo-excited electrons, restricts the undesired recombination reactions and prevents the direct contact of electrolyte with conducting substrates. Attempt is made to understand the effect of passivation layer on the transportation kinetics of photo-excited electrons by analyzing the electrochemical impedance spectra of the developed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  ADS  Google Scholar 

  2. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev 110, 6595–6663 (2010)

    Article  Google Scholar 

  3. B. Roose, S. Pathak, U. Steiner, Doping of TiO2 for sensitized solar cells. Chem. Soc. Rev 44, 8326–8349 (2015)

    Article  Google Scholar 

  4. M. Stefik, F.J. Heiligtag, M. Niederberger, M. Grätzel, Improved nonaqueous synthesis of TiO2 for dye-sensitized solar cells. ACS Nano 7, 8981–8989 (2013)

    Article  Google Scholar 

  5. T.P. Chou, Q. Zhang, G.E. Fryxell, G. Cao, Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv. Mater 19, 2588–2592 (2007)

    Article  Google Scholar 

  6. A. Kay, M. Grätzel, Dye-sensitized core-shell nanocrystals: improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mater 14, 2930–2935 (2002)

    Article  Google Scholar 

  7. C. Magne, T. Moehl, M. Urien, M. Gratzel, T. Pauporte, Effects of ZnO film growth route and nanostructure on electron transport and recombination in dye-sensitized solar cells. J. Mater. Chem. A 1, 2079–2088 (2013)

    Article  Google Scholar 

  8. A.K. Chandiran, M.A. Jalebi, M.K. Nazeeruddin, M. Grätzel, Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano 8, 2261–2268 (2014)

    Article  Google Scholar 

  9. E.C. Muniz, M.S. Góes, J.J. Silva, J.A. Varela, E. Joanni, R. Parra, P.R. Bueno, Synthesis and characterization of mesoporous TiO2 nanostructured films prepared by a modified sol-gel method for application in dye solar cells. Ceram. Int 37, 1017–1024 (2011)

    Article  Google Scholar 

  10. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nanoforest of hydrothermally grown hierarchical zno nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666–671 (2011)

    Article  ADS  Google Scholar 

  11. K.K. Wong, A. Ng, X.Y. Chen, Y.H. Ng, Y.H. Leung, K.H. Ho, A.B. Djurišić, A.M.C. Ng, W.K. Chan, L. Yu, D.L. Phillip, Effect of ZnO nanoparticle properties on dye-sensitized solar cell performance. ACS Appl. Mater. Interfaces 4, 1254–1261 (2012)

    Article  Google Scholar 

  12. T. Ma, M. Akiyama, E. Abe, I. Imai, High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett. 5, 2543–2547 (2005)

    Article  ADS  Google Scholar 

  13. J. Du, J. Qi, D. Wang, Z. Tang, Facile synthesis of Au@TiO2 coreshell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci 5, 6914–6918 (2012)

    Article  Google Scholar 

  14. J. Xu, K. Fan, W. Shi, K. Li, T. Peng, Application of ZnO micro-flowers as scattering layer for ZnO-based dye-sensitized solar cells with enhanced conversion efficiency. Sol. Energy 101, 150–159 (2014)

    Article  ADS  Google Scholar 

  15. B.A. Gregg, F. Pichot, S. Ferrere, C.L. Fields, interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J. Phys. Chem. B 105, 1422–1429 (2001)

    Article  Google Scholar 

  16. C. Nasr, P.V. Kamat, S. Hotchandani, Photoelectrochemical behavior of coupled SnO2|CdSe nanocrystalline semiconductor films. J. Electroanal. Chem 420, 201–207 (1997)

    Article  Google Scholar 

  17. S.J. Roh, R.S. Mane, S.K. Min, W.J. Lee, C.D. Lokhande, S.H. Han, Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells. Appl. Phys. Lett. 89, 253512 (2006)

    Article  ADS  Google Scholar 

  18. C. Jiang, W.L. Koh, M.Y. Leung, W. Hong, Y. Li, J. Zhang, Influences of alcoholic solvents on spray pyrolysis deposition of TiO2 blocking layer films for solid-state dye-sensitized solar cells. J. Solid State Chem 198, 197–202 (2013)

    Article  ADS  Google Scholar 

  19. Y.J. Kim, Y.H. Lee, M.H. Lee, H.J. Kim, J.H. Pan, G.I. Lim, Y.S. Choi, K. Kim, N.G. Park, C. Lee, W.I. Lee, Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO2 thin film. Langmuir 24, 13225–13230 (2008)

    Article  Google Scholar 

  20. M.S. Goes, E. Joanni, E.C. Muniz, R. Savu, T.R. Habeck, P.R. Bueno, F.F. Santiago, Impedance spectroscopy analysis of the effect of TiO2 blocking layers on the efficiency of dye sensitized solar cells. J. Phys. Chem. C 116, 12415–12421 (2012)

    Article  Google Scholar 

  21. J.B. Xia, N. Masaki, K.J. Jiang, S. Yanagida, Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 Interfaces in ionic liquid-based dye-sensitized solar cells. Chem. Commun 2, 138–140 (2007)

    Article  Google Scholar 

  22. I. Hod, M. Shalom, Z. Tachan, S. Rühle, A. Zaban, SrTiO3 Recombination-inhibiting barrier layer for type II dye-sensitized solar cells. J. Phys. Chem. C 114, 10015–10018 (2010)

    Article  Google Scholar 

  23. F. Hua, Y. Xia, Z. Guana, X. Yin, T. He, Low temperature fabrication of ZnO compact layer for high performance plastic dye-sensitized ZnO solar cells. Electrochim. Acta 69, 97–101 (2012)

    Article  Google Scholar 

  24. H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Multishelled metal oxide hollow spheres: Easy synthesis and formation mechanism. Chem. Eur. J 22, 8864–8871 (2016)

    Article  Google Scholar 

  25. H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol 269, 443–451 (2015)

    Article  Google Scholar 

  26. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3 + ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem C 3, 7677–7690 (2015)

    Article  Google Scholar 

  27. G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of g-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)

    Article  Google Scholar 

  28. Q. Wu, G. Wu, L. Wang, W. Hu, H. Wu, Facile synthesis and optical properties of Prussian Blue microcubes and hollow Fe2O3 microboxes. Mater. Sci. Semicond. Process 30, 476–481 (2015)

    Article  Google Scholar 

  29. G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett 144, 157–160 (2015)

    Article  Google Scholar 

  30. P. Das, B. Mondal, K. Mukherjee, Hierarchical zinc oxide nano-tips and micro-rod: Hydrothermal synthesis and improved chemi-resistive response towards ethanol. RSC Adv 6, 1408–1414 (2016)

    Article  Google Scholar 

  31. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, M. Grätzel, Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613–4619 (2008)

    Article  ADS  Google Scholar 

  32. A. Hagfeldt, M. Gratzel, Molecular photovoltaics. Acc. Chem. Res 33, 269–277 (2000)

    Article  Google Scholar 

  33. J.R. Macdonald, W.R. Kenan, Impedance spectroscopy: emphasizing solid materials and systems. (Wiley, New York, 1987)

    Google Scholar 

  34. C.P. Hsu, K.M. Lee, J.T.W. Huang, C.Y. Lin, C.H. Lee, L.P. Wang, S.Y. Tsai, K.C. Ho, EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochim. Acta 53, 7514–7522 (2008)

    Article  Google Scholar 

  35. Q. Wang, J.E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005)

    Article  Google Scholar 

  36. A.B.F. Martinson, M.S. Góes, F.F. Santiago, J. Bisquert, M.J. Pellin, J.T. Hupp, Electron transport in dye-sensitized solar cells based on zno nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. J. Phys. Chem. A 113, 4015–4021 (2009)

    Article  Google Scholar 

  37. A. Omar, H. Abdullah, Electron transport analysis in zinc oxide-based dye-sensitized solar cells: A review, Renew. Sust. Energ. Rev 31, 149–157 (2014)

    Article  Google Scholar 

  38. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 110, 13872–13880 (2006)

    Article  Google Scholar 

  39. J.A. Anta, E. Guillén, R. Tena-Zaera, ZnO-based dye-sensitized solar cells. J. Phys. Chem. C 116, 11413–11425 (2012)

    Article  Google Scholar 

  40. M. Wang, C. Grätzel, S.J. Moon, R. Humphry-Baker, N. Rossier-Iten, M.S. Zakeeruddin, M. Grätzel, Surface design in solid-state dye sensitized solar cells: effects of zwitterionic co-adsorbents on photovoltaic performance. Adv. Funct. Mater 19, 2163–2172 (2009)

    Article  Google Scholar 

  41. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy, Sol. Energy Mater. Sol. Cells 87, 117–131 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The author K.M. is thankful to DST, Govt. of India for providing him Inspire Faculty fellowship (Ref. DST/IFA12-CH-43) and associated research grant for this work. P.D. is thankful to DST, Govt. of India for supporting her fellowship. There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalisadhan Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Mondal, B. & Mukherjee, K. Improved efficiency of ZnO hierarchical particle based dye sensitized solar cell by incorporating thin passivation layer in photo-anode. Appl. Phys. A 124, 80 (2018). https://doi.org/10.1007/s00339-017-1486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1486-0

Navigation