Skip to main content
Log in

Highly efficient dye-sensitized solar cells with TiO2-coated silver nanowire-incorporated tri-layered photoanode

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study is about investigating the effect of adding TiO2-coated silver nanowires into a tri-layered photoanode of dye-sensitized solar cells (DSSCs) to improve the photovoltaic performance. Face-centred cubic silver nanowires (AgNWs) were synthesized via a rapid, scalable and green pathway method. The average length and diameter of AgNWs were 5 μm and 70 nm, respectively. AgNWs were coated with titanium dioxide (TiO2) using 2-mercaptoethanol as the binder. AgNW@TiO2 core-shell structure was formed by the hydrothermal method and the average diameter of the coated TiO2 was observed to be 14 nm. TiO2 shell showed anatase phase, which was a significant advantage for higher dye absorbance leading to a higher power conversion efficiency (PCE). The PCE for a DSSC with single-layered TiO2 photoanode increased from 6.70 to 8.87% due to AgNW@TiO2 core-shell structured photoanode, reflecting a 32.3% enhancement. The PCE for a DSSC with tri-layered AgNWs@TiO2 core-shell structured photoanode was 10.5% showing an impressive enhancement of 49.6% compared to the DSSC with a pure tri-layered TiO2 photoanode. TiO2 shell appears to act as a protective shell around AgNWs by both resisting redox chemical corrosion of Ag by iodide ions in the electrolyte and increasing the thermal stability of AgNWs against annealing at high temperatures. Further, TiO2-coated AgNWs facilitate increased photoelectron generation by plasmonic effect, reduce the recombination and enhance the electron lifetime while providing a direct pathway for excited electrons leading to a significant improvement in the PCE of DSSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Reference

  1. O’Regan B and Grätzel M 1991 Nature 353 737

    Article  Google Scholar 

  2. Dissanayake M A K L, Kumari J M K W, Senadeera G K R and Thotawatthage C A 2016 J. Appl. Electrochem. 46 47

    Article  CAS  Google Scholar 

  3. Jang Y H, Jang Y J, Kochuveedu S T, Byun M, Lin Z, Kim D H et al 2014 Nanoscale 6 1823

    Article  CAS  Google Scholar 

  4. Jang I, Kang T, Cho W, Kang Y S, Oh S-G, Im S S et al 2015 J. Phys. Chem. Solids 86 122

    Article  CAS  Google Scholar 

  5. Kumari M G C M, Perera C S, Dassanayake B S, Dissanayake M A K L and Senadeera G K R 2019 Electrochim. Acta 298 330

    Article  CAS  Google Scholar 

  6. Chandrasekhar P S, Elbohy H, Vaggensmith B, Dubey A, Reza K M, Komarala V K et al 2017 Mater. Today. Energy 5 237

    Google Scholar 

  7. Garmaroudi Z A and Mohammadi M R 2016 J. Am. Ceram. Soc. 99 167

    Article  CAS  Google Scholar 

  8. Stojanovic N, Maithripala D H S, Berg J M and Holtz M 2010 Phys. Rev. B - Condens. Matter Mater. Phys. 82 1

  9. Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668

    Article  CAS  Google Scholar 

  10. Hutter E and Fendler J H 2004 Adv. Mater. 16 1685

    Article  CAS  Google Scholar 

  11. Ma C, Wang X, Luo H and Zhang D 2017 J. Mater. Sci. Mater. Electron 28 10715

    Article  CAS  Google Scholar 

  12. Zhang Q and Cao G 2011 Nano Today 6 91

    Article  CAS  Google Scholar 

  13. Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824

    Article  CAS  Google Scholar 

  14. Qingsong J, Jian G, Hong T, Guojia F, Helin W, Lin Y et al 2014 Mater. Lett. 134 16

    Article  Google Scholar 

  15. Wen C, Ishikawa K, Kishima M and Yamada K 2000 Sol. Energy Mater. Sol Cells 61 339

    Article  CAS  Google Scholar 

  16. Jeong N C, Prasittichai C and Hupp J T 2011 Langmuir 27 14609

    Article  CAS  Google Scholar 

  17. Fan Y H, Ho C Y and Chang Y J 2017 Scanning 2017 1

    Google Scholar 

  18. Du P, Cao Y, Li D, Liu Z, Kong X, Sun Z et al 2013 RSC Adv. 3 6016

    Article  CAS  Google Scholar 

  19. Chen T-Y, Fan C M, Wu J Y and Lin T L 2009 J. Chinese Chem. Soc. 56 1244

    Article  CAS  Google Scholar 

  20. Cheng Y, Youhong T, Zijin S, Zhexu Z and Cheng F 2015 J. Mater. Sci. Technol. 31 16

    Article  Google Scholar 

  21. Cheng B, Le Y and Yu J 2010 J. Hazard Mater. 177 971

    Article  CAS  Google Scholar 

  22. Dissanayakea M A K L, Jaseetharana T, Senadeera G K R, Mellander B-E, Albinson I, Furlanie M et al 2019 J. Solid State Electrochem. 23 1787

    Article  Google Scholar 

  23. Dissanayake M A K L, Sarangika H N M, Senadeera G K R, Divarathna H K D W M N R and Ekanayake E M P C 2017 J. Appl. Electrochem. 47 1239

    Article  CAS  Google Scholar 

  24. Ramasamy P, Seo D-M, Kim S-H and Kim J 2012 J. Mater. Chem. 22 11651

    Article  CAS  Google Scholar 

  25. Johan M R, Aznan N A K, Yee S T, HongHo I, Ooi S, Singho N D et al 2014 J. Nanomater. 2014 1

    Article  Google Scholar 

  26. Sun Y, Gates B, Mayers B and Xia Y 2002 Nano Lett. 2 165

    Article  CAS  Google Scholar 

  27. Wang Z, Liu J, Chen X, Wan J and Qian Y 2005 Chem. - A Eur. J. 11 160

    Article  Google Scholar 

  28. Gangishetty M K, Lee K E, Scott R W J and Kelly T L 2013 ACS Appl. Mater. Interfaces 5 11044

    Article  CAS  Google Scholar 

  29. Ferry V E, Munday J N and Atwater H A 2010 Adv. Mater. 22 4794

    Article  CAS  Google Scholar 

  30. Erwin W R, Zarick H F, Talbert E M and Bardhan R 2016 Energy Environ. Sci. 9 1577

    Article  CAS  Google Scholar 

  31. Schuck P J 2013 Nat. Nanotechnol. 8 799

    Article  CAS  Google Scholar 

  32. Schaadt D M, Feng B and Yu E T 2005 Appl. Phys. Lett. 86 1

    Article  Google Scholar 

  33. Marchuk K and Willets K A 2014 Chem. Phys. 445 95

    Article  CAS  Google Scholar 

  34. Ihara M, Tanaka K, Sakaki K, Honma I and Yamada K 1997 J. Phys. Chem. B 101 5153

    Article  CAS  Google Scholar 

  35. Madigasekara I, Perera C S, Kumari J M K W, Senadeera G K R and Dissanayakea M A K L 2021 Sol. Energy 230 59

    Article  CAS  Google Scholar 

  36. Chou J C, Lin Y C, Lai C H, Kuo P Y, Nien Y H, Chang J X et al 2021 IEEE J. Electron Devices Soc. 9 250

    Article  CAS  Google Scholar 

Download references

Acknowledgement

HKHD Kankanamge would like to thank Dr C A Thotawatthage, Dr T Jaseetharan and Mrs Imali Madikasekara of the National Institute of Fundamental Studies (NIFS) for their support during the experimentation stage. H C S Perera gratefully acknowledges the financial support provided by the National Science Foundation (NSF) under Grant No. RG/2018/BS/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H C S Perera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kankanamge, H.K.H.D., Kumari, J.M.K.W., Dissanayake, M.A.K.L. et al. Highly efficient dye-sensitized solar cells with TiO2-coated silver nanowire-incorporated tri-layered photoanode. Bull Mater Sci 46, 145 (2023). https://doi.org/10.1007/s12034-023-02977-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02977-5

Keywords

Navigation