Skip to main content
Log in

Grain size disposed structural, optical and polarization tuning in ZnO

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Structural, optical and polarization properties were investigated in different batches of ZnO synthesized by sol–gel method at varying sintering temperature. The structural visualization and charge scattering density analysis on the basis of X-ray diffraction data indicate polarized nature of sample. The structure- and polarization-related parameters were determined from Raman and Fourier transformed infrared spectroscopy data. Urbach energies and band gap were calculated using UV–visible spectroscopy. We observed increase in polarization, decrease in optical activity and band gap with increasing grain size without any increase in defects. Distortion in ZnO tetrahedra resulted in nonlinear optical behaviour above band edges. The results show direct correlation between grain size, band gap, optical behaviour and polarization. Low band gap and high polarization in ZnO can be employed for the production of opto-electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.J. Lee et al., Appl. Phys. Lett. 81, 4020 (2002)

    Article  ADS  Google Scholar 

  2. C. Rao, F. Deepak, J. Mater. Chem. 15, 573 (2005)

    Article  Google Scholar 

  3. Y. Kozuka, A. Tsukazaki, M. Kawasaki, Appl. Phys. Rev. 1, 011303 (2014)

    Article  ADS  Google Scholar 

  4. Y. Du et al., Appl. Phys. A 76, 171 (2003)

    Article  ADS  Google Scholar 

  5. P. Rodnyi, I. Khodyuk, Opt. Spectrosc. 111, 776 (2011)

    Article  ADS  Google Scholar 

  6. G. Xiong, U. Pal, J.G. Serrano, J. Appl. Phys. 101, 024317 (2007)

    Article  ADS  Google Scholar 

  7. G. Xiong et al., Phys. Status Solidi (c) 3, 3577 (2006)

    Article  ADS  Google Scholar 

  8. H.-M. Chiu, J.-M. Wu, J. Mater. Chem. A 1, 5524 (2013)

    Article  Google Scholar 

  9. S. Iwai, S. Namba, Appl. Phys. Lett. 16, 354 (1970)

    Article  ADS  Google Scholar 

  10. F. Nicoll, Appl. Phys. Lett. 9, 13 (1966)

    Article  ADS  Google Scholar 

  11. J.-L. Zhao et al., J. Cryst. Growth 276, 507 (2005)

    Article  ADS  Google Scholar 

  12. D.C. Look, J. Electron. Mater. 35, 1299 (2006)

    Article  ADS  Google Scholar 

  13. Ü. Özgür et al., J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  14. D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  15. S. Pearton et al., Prog. Mater. Sci. 50, 293 (2005)

    Article  Google Scholar 

  16. F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, R10024 (1997)

    Article  ADS  Google Scholar 

  17. A. Dal Corso et al., Phys. Rev. B 50, 10715 (1994)

    Article  ADS  Google Scholar 

  18. P. Yang et al., ACS Nano 7, 2617 (2013)

    Article  Google Scholar 

  19. H. Wang et al., Electrochim. Acta 54, 2851 (2009)

    Article  Google Scholar 

  20. J. Liu et al., J. Mater. Chem. A 2, 5051 (2014)

    Article  ADS  Google Scholar 

  21. L. Zhang et al., J. Mater. Chem. A 1, 12066 (2013)

    Article  ADS  Google Scholar 

  22. A. Becheri et al., J. Nanopart. Res. 10, 679 (2008)

    Article  Google Scholar 

  23. Q. Shao et al., J. Sol–Gel. Sci. Technol. 77, 240 (2015)

    Article  Google Scholar 

  24. J.-H. Lee, K.-H. Ko, B.-O. Park, J. Cryst. Growth 247, 119 (2003)

    Article  ADS  Google Scholar 

  25. S.A. Kamaruddin et al., Appl. Phys. A 104, 263 (2011)

    Article  ADS  Google Scholar 

  26. A. Chrissanthopoulos et al., Thin Solid Films 515, 8524 (2007)

    Article  ADS  Google Scholar 

  27. A. Chrissanthopoulos et al., Photon. Nanostruct. 9, 132 (2011)

    Article  ADS  Google Scholar 

  28. S. Baruah, J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009)

    Article  Google Scholar 

  29. Y. Segawa et al., Phys. Status Solidi (b) 202, 669 (1997)

    Article  ADS  Google Scholar 

  30. C. Park, S. Zhang, S.-H. Wei, Phys. Rev. B 66, 073202 (2002)

    Article  ADS  Google Scholar 

  31. Z. Zeng et al., J. Appl. Phys. 114, 023510 (2013)

    Article  ADS  Google Scholar 

  32. Z.L. Wang, J. Phys. Condens. Matter 16, R829 (2004)

    Article  ADS  Google Scholar 

  33. S. Baskoutas et al., J. Phys. Chem. C 116, 26592 (2012)

    Article  Google Scholar 

  34. Z. Zeng et al., Phys. Rev. B 87, 125302 (2013)

    Article  ADS  Google Scholar 

  35. C.G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000)

    Article  ADS  Google Scholar 

  36. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    Article  ADS  Google Scholar 

  37. A. Calzolari, M.B. Nardelli, Sci. Rep. 3, 2999 (2013)

    Article  ADS  Google Scholar 

  38. D. Vogel, P. Krüger, J. Pollmann, Phys. Rev. B 52, R14316 (1995)

    Article  ADS  Google Scholar 

  39. J. Albertsson, S. Abrahams, Å. Kvick, Acta Crystallogr. Sect. B Struct. Sci. 45, 34 (1989)

    Article  Google Scholar 

  40. M. McCluskey, S. Jokela, J. Appl. Phys. 106, 071101 (2009)

    Article  ADS  Google Scholar 

  41. N. Ashkenov et al., J. Appl. Phys. 93, 126 (2003)

    Article  ADS  Google Scholar 

  42. T. Hanada, Oxide and Nitride Semiconductors (Springer, Berlin, 2009), p. 1

    Book  Google Scholar 

  43. P. Xu et al., Nucl. Instr. Meth. Phys. B 199, 286 (2003)

    Article  ADS  Google Scholar 

  44. T.C. Damen, S. Porto, B. Tell, Phys. Rev. 142, 570 (1966)

    Article  ADS  Google Scholar 

  45. O. Brafman, S. Mitra, Phys. Rev. 171, 931 (1968)

    Article  ADS  Google Scholar 

  46. J. Scott, Phys. Rev. B 2, 1209 (1970)

    Article  ADS  Google Scholar 

  47. R. Cuscó et al., Phys. Rev. B 75, 165202 (2007)

    Article  ADS  Google Scholar 

  48. K. Mahmood, S.B. Park, H.J. Sung, J. Mater. Chem. C 1, 3138 (2013)

    Article  Google Scholar 

  49. F. Decremps et al., Phys. Rev. B 65, 092101 (2002)

    Article  ADS  Google Scholar 

  50. L. Bergman et al., J. Appl. Phys. 98, 093507 (2005)

    Article  ADS  Google Scholar 

  51. K.A. Alim et al., J. Appl. Phys. 97, 124313 (2005)

    Article  ADS  Google Scholar 

  52. J. Ye et al., Appl. Phys. Lett. 94, 11913 (2009)

    Article  ADS  Google Scholar 

  53. T. Nann, J. Schneider, Chem. Phys. Lett. 384, 150 (2004)

    Article  ADS  Google Scholar 

  54. D.C. Look, J.W. Hemsky, J. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)

    Article  ADS  Google Scholar 

  55. A.B. Djurišić, Y.H. Leung, Small 2, 944 (2006)

    Article  Google Scholar 

  56. V. Srikant, D. Clarke, J. Appl. Phys. 81, 6357 (1997)

    Article  ADS  Google Scholar 

  57. R. Dietz, J. Hopfield, D. Thomas, J. Appl. Phys. 32, 2282 (1961)

    Article  ADS  Google Scholar 

  58. N.B. Chen et al., J. Phys. Condens. Matter 16, 2973 (2004)

    Article  ADS  Google Scholar 

  59. V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998)

    Article  ADS  Google Scholar 

  60. S. John et al., Phys. Rev. Lett. 57, 1777 (1986)

    Article  ADS  Google Scholar 

  61. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  62. S. Dutta et al., Prog. Mater. Sci. 54, 89 (2009)

    Article  Google Scholar 

  63. A. Janotti, C.G. Van de Walle, Phys. Rev. B 76, 165202 (2007)

    Article  ADS  Google Scholar 

  64. A.A. Sokol et al., Faraday Discuss. 134, 267 (2007)

    Article  ADS  Google Scholar 

  65. P. Erhart, K. Albe, A. Klein, Phys. Rev. B 73, 205203 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are thankful to UGC for providing financial assistance. We are grateful to Dr. Mukul Gupta, Dr. Vasant Sathe and Dr. U P Deshpande, UGC-DAE Consortium for Scientific Research, Indore for providing experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilas Shelke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Para, T.A., Reshi, H.A., Pillai, S. et al. Grain size disposed structural, optical and polarization tuning in ZnO. Appl. Phys. A 122, 730 (2016). https://doi.org/10.1007/s00339-016-0256-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0256-8

Keywords

Navigation