Skip to main content
Log in

Photoluminescence and electrical properties of polyvinyl alcohol films doped with CdS nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In situ preparation of polyvinyl alcohol (PVA) films doped with cadmium sulfide (CdS) nanoparticles was conducted by gamma radiation. The films were characterized in terms of photoluminescence and electrical conductivity. The photoluminescence results indicated the existence of two emission peaks around 470 and 530 nm, which are due to electron–hole recombination of CdS nanoparticles and surface trapped emission due to the PVA capping, respectively. DC electrical conductivity (σ DC) measurement in the temperature range from 303 up to 373 K reveals an increase in its value with increasing both Cd2+ ion molar concentration and irradiation dose. AC electrical conductivity (σ AC) measurement over the same temperature range at an applied field frequency of 10, 100, 500 and 1000 kHz shows an increase behavior with increasing temperature, frequency, Cd2+ ion molar concentration and irradiation dose. Dielectric constant (ε 1) exhibits an increase with temperature, whereas it shows reduced values with increasing frequency, Cd2+ ion molar concentration and irradiation dose. Also, the dielectric loss tangent (tan δ) follows an increasing trend with increasing temperature, Cd2+ ion molar concentration and irradiation dose while it has an opposite trend with increasing frequency. The CdS/PVA nanocomposite films behavior could be explained on the basis of formation of charge-transfer complexes (CTCs) by the CdS nanoparticles doped into the PVA matrix and the role of radiation in enhancing the charge carrier mobility of such CTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Tiwari, S. Tiwari, Cryst. Res. Technol. 41, 78–82 (2006)

    Article  Google Scholar 

  2. R. Seoudi, A.B. El-Bailly, W. Eisa, A.A. Shabaka, S.I. Soliman, R.K. Abd El Hamid, R.A. Ramadan, J. Appl. Sci. Res. 8(2), 658–667 (2012)

    Google Scholar 

  3. L. Shen, Y. Fang, H. Wei, Y. Yuan, J. Huang, Adv. Mater. 28, 2043–2048 (2016)

    Article  Google Scholar 

  4. G. Jin, L.-M. Jiang, D.-M. Yi, H.-Z. Sun, H.-C. Sun, ChemPhysChem 16, 3687–3694 (2015)

    Article  Google Scholar 

  5. A. Reisch, A.S. Klymchenko, Small (2016). doi:10.1002/smll.201503396

    Google Scholar 

  6. T. Radhakrishnan, M.K. Georges, P.S. Nair, A.S. Luyt, V. Djokovic, Colloid Polym. Sci. 286, 683–689 (2008)

    Article  Google Scholar 

  7. J.C. Ferrer, A. Salinas-Castillo, J.L. Alonso, S. Fernández de Ávilaam, R. Mallavia, Phys. Procedia 2, 335–338 (2009)

    Article  ADS  Google Scholar 

  8. D. Saikia, P.K. Saikia, P.K. Gogoi, P. Saikia, Dig. J. Nanomater. Biostruct. 6, 589–597 (2011)

    Google Scholar 

  9. C.J. Murphy, Anal. Chem. 47(A), 520–526 (2002)

    Google Scholar 

  10. P.D. Cozzoli, T. Pellegrino, L. Manna, Chem. Soc. Rev. 35, 1195–1208 (2006)

    Article  Google Scholar 

  11. G. Schmid, B. Coran, Eur. J. Inorg. Chem. 17, 3081–3098 (2003)

    Article  Google Scholar 

  12. Z.I. Ali, O. Ebraheem, H.H. Saleh, F.H. Abd Salam, R. Sokary, Polym. Eng. Sci. (2015). doi:10.1002/pen.24151

    Google Scholar 

  13. Q. Xia, X. Chen, K. Zhao, J. Liu, Mater. Chem. Phys. 111, 98–105 (2008)

    Article  Google Scholar 

  14. Y. Cai, X. Wu, Q. Liu, H. Liu, J. Appl. Polym. Sci. (2016). doi:10.1002/APP.43227

    Google Scholar 

  15. R.F. Bhajanti, V. Ravindrachary, A. Harisha, G. Ranganathaiah, G.N. Kumaraswamy, Appl. Phys. A 87, 797–805 (2007)

    Article  ADS  Google Scholar 

  16. S. Mahendia, A.K. Tomar, S. Kumar, J. Alloys Compd. 508, 406–411 (2010)

    Article  Google Scholar 

  17. V. Raja, A.K. Sharma, V.V.R.N. Rao, Mater. Lett. 58, 3242–3247 (2004)

    Article  Google Scholar 

  18. J.M. Stevels, The Electrical Properties of Glass, Handbuch der Physik (Springer, Berlin, 1957), p. 350

    Google Scholar 

  19. M.H. Harun, E. Saion, A. Kassim, M.Y. Hussain, I.S. Mustafa, M.A.A. Omer, Malays. Polym. J. 13(2), 24–31 (2008)

    Google Scholar 

  20. V.S. Sangawar, R.J. Dhokne, A.U. Ubale, P.S. Chikhalikar, S.D. Meshram, Bull. Mater. Sci. 30(2), 163–166 (2007)

    Article  Google Scholar 

  21. C.U. Devi, A.K. Sharma, V.V.R.N. Rao, Mater. Lett. 56, 167–174 (2002)

    Article  Google Scholar 

  22. A. Kiesow, J.E. Morris, C. Radehaus, A. Heilmann, J. Appl. Phys. 94, 6988–6990 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Science and Technology Development Fund (STDF), Egypt, for their financial support under the Grant Number (6370). The authors would like also to express their thanks to Ms. R. Sokkary for her help in preparing the PVA films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ghazy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z.I., Hosni, H.M., Saleh, H.H. et al. Photoluminescence and electrical properties of polyvinyl alcohol films doped with CdS nanoparticles. Appl. Phys. A 122, 514 (2016). https://doi.org/10.1007/s00339-016-0037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0037-4

Keywords

Navigation