Skip to main content
Log in

The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The inverted organic light-emitting diodes (IOLEDs) have been fabricated using the hybrid-p-doped hole transport layer consisting of MoO3-doped N,N′-bis-(1-naphthl)-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB:MoO3) and 2,3,5,6-Tetrafluoro-7,7,8,8,-tetracyano-quinodimethane-doped NPB (NPB:F4-TCNQ). Compared with the IOLED using the 20 nm NPB:MoO3/Al, the one using the 10 nm NPB:F4-TCNQ/10 nm NPB:MoO3/Al showed increased performance, attributed to the higher conductivity of NPB:F4-TCNQ than NPB:MoO3, reducing the ohmic loss in hole conduction through the combined 10 nm NPB:F4-TCNQ and 10 nm NPB:MoO3 than through the 20 nm NPB:MoO3; it also presented improved performance than the IOLED using the 20 nm NPB:F4-TCNQ/Al, ascribed to the non-ohmic contact formation between NPB:F4-TCNQ and Al, resulting from that the p-doping effect of F4-TCNQ in NPB was significantly suppressed by the Al deposition in the interfacial zone. The hybrid p-doping of hole transport layer can offer a large space to promote the performance of IOLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.B. Levy, W. Evans, J. Ebner, P. Farrell, M. Hufford, B.H. Alison, D. Wheeler, H. Lin, O. Prache, E. Naviasky, IEEE J. Solid State Circuits 37, 1879 (2002)

    Article  Google Scholar 

  2. O. Prache, J. Soc. Inf. Disp. 10, 133 (2002)

    Article  Google Scholar 

  3. C.R. Cheng, Y.H. Chen, D.S. Qin, W. Quan, J.S. Liu, Chin. Phys. Lett. 27, 117801 (2010)

    Article  ADS  Google Scholar 

  4. D.S. Qin, J.S. Liu, Y.H. Chen, C.R. Cheng, W. Quan, Phys. Solidi Status A 208, 1976 (2011)

    Article  Google Scholar 

  5. D.S. Qin, L. Chen, Y.H. Chen, J.S. Liu, G.F. Li, W. Quan, J.D. Zhang, D.H. Yan, Phys. Solidi Status A 209, 790 (2012)

    Article  ADS  Google Scholar 

  6. J.S. Liu, Y.H. Chen, D.S. Qin, C.R. Cheng, W. Quan, L. Chen, G.F. Li, Semicond. Sci. Technol. 26, 095011 (2011)

    Article  ADS  Google Scholar 

  7. K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev. 107, 1233 (2007)

    Article  Google Scholar 

  8. D.S. Qin, J.S. Liu, Y.H. Chen, L. Chen, W. Quan, G.F. Li, Semicond. Sci. Technol. 27, 045012 (2012)

    Article  ADS  Google Scholar 

  9. H. Ikeda, J. Sakata, M. Hayakawa, T. Aoyama, T. Kawakami, K. Kamata, Y. Iwaki, S. Seo, Y. Noda, R. Nomura, S. Yamazaki, in: SID Symposium Digest of Technical Papers 37, 923 (2006)

  10. C.T. Lin, G.R. Lee, C.I. Wu, T.Y. Cho, C.C. Wu, T.W. Pi, Fall Meeting of Material Research Society (MRS), Boston, 2007)

    Google Scholar 

  11. C.C. Chang, M.T. Hsieh, J.F. Chen, S.W. Hwang, C.H. Chen, Appl. Phys. Lett. 89, 253504 (2006)

    Article  ADS  Google Scholar 

  12. D.S. Leem, H.D. Park, J.W. Kang, J.H. Lee, J.W. Kim, J.J. Kim, Appl. Phys. Lett. 91, 011113 (2007)

    Article  ADS  Google Scholar 

  13. X. Zhou, M. Pfeiffer, J.S. Huang, J. Blochwitz-Nimoth, D.S. Qin, A. Werner, J. Drechesel, B. Maennig, K. Leo, Appl. Phys. Lett. 81, 922 (2002)

    Article  ADS  Google Scholar 

  14. A. Yamamori, C. Adachi, T. Koyama, Y. Taniguchi, Appl. Phys. Lett. 72, 2147 (1998)

    Article  ADS  Google Scholar 

  15. J.Y. Lee, J.H. Kwon, Appl. Phys. Lett. 88, 183502 (2006)

    Article  ADS  Google Scholar 

  16. J. Meyer, S. Hamwi, S. Schmale, T. Winkler, H.H. Johannes, T. Riedl, W. Kowalsky, J. Mater. Chem. 19, 702 (2009)

    Article  Google Scholar 

  17. J.H. Lee, H.M. Kim, K.B. Kim, R. Kabe, P. Anzenbacher, J.J. Kim, Appl. Phys. Lett. 98, 173303 (2011)

    Article  ADS  Google Scholar 

  18. M. Kröer, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Org. Electron. 10, 932 (2009)

    Article  Google Scholar 

  19. D.S. Qin, M.X. Wang, Y.H. Chen, L. Chen, G.F. Li, W.B. Wang, Eur. Phys. J. Appl. Phys. 67, 30201 (2014)

    Article  ADS  Google Scholar 

  20. L. Chen, D.S. Qin, Y.H. Chen, G.F. Li, M.X. Wang, D.Y. Ban, Phys. Solidi Status A 210, 1157 (2013)

    Article  Google Scholar 

  21. C.H. Gao, X.Z. Zhu, L. Zhang, D.Y. Zhou, Z.K. Wang, L.S. Liao, Appl. Phys. Lett. 102, 153301 (2013)

    Article  ADS  Google Scholar 

  22. S. Braun, W.R. Salaneck, M. Fahlman, Adv. Mater. 21, 1450 (2009)

    Article  Google Scholar 

  23. T. Matsushima, C. Adachi, J. Appl. Phys. 103, 034501 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the National Science foundations of China (Grant No. 50803014) and Hebei Province (Grant No. E2013202119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dashan Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, D., Jin, S., Chen, Y. et al. The improved performance in inverted organic light-emitting diodes using the hybrid-p-doped hole transport layer. Appl. Phys. A 120, 651–655 (2015). https://doi.org/10.1007/s00339-015-9233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9233-x

Keywords

Navigation