Skip to main content
Log in

Vibration analysis of single-walled carbon nanocones using multiscale atomistic finite element method incorporating Tersoff–Brenner potential

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This research work addresses the free and forced vibration characteristics of single-walled carbon nanocones (SWCNCs) using multiscale atomistic finite element method (AFEM) incorporating Tersoff–Brenner (TB) potential. The multibody interatomic TB potential is used to represent the energy between two carbon atoms. Based on the TB potential, new set of force constant parameters is established for carbon nanocones, and the equivalent geometric and elastic properties of the space frame element to represent carbon–carbon bond are derived which are consistent with the material constitutive relations. The eigenvalues of clamped and cantilevered SWCNCs with different disclination angles are extracted using AFEM, and the effect of these angles on the resonant frequencies is investigated. A computational sine sweep test is carried out on the atomic structure of SWCNCs within the frequency range of 0–10 THz to investigate the steady-state forced vibration response under harmonic excitation. The frequency response of the SWCNCs to the cyclic and impulse load over an applied frequency range is calculated. Based on the forced vibration response spectra, the resonant frequency components of SWCNCs are identified. The results have been validated using molecular dynamics simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Lijima, T. Ichihashi, Y. Ando, Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356, 776–778 (1992)

    Article  ADS  Google Scholar 

  2. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  ADS  Google Scholar 

  3. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  ADS  Google Scholar 

  4. M. Ge, K. Sattler, Observation of fullerene cones. Chem. Phys. Lett. 220, 192–196 (1994)

    Article  ADS  Google Scholar 

  5. X. Yu, M. Tverdal, S. Raaen, G. Helgesen, K.D. Knudsen, Hydrogen adsorption on carbon nanocone material studied by thermal desorption and photoemission. Appl. Surf. Sci. 255, 1906–1910 (2008)

    Article  ADS  Google Scholar 

  6. R. Majidi, K. Ghafoori Tabrizi, Study of neon adsorption on carbon nanocones using molecular dynamics simulation. Phys. B 405, 2144–2148 (2010)

    Article  ADS  Google Scholar 

  7. W.J. Chang, T.H. Fang, H.L. Lee, Y.C. Yang, Vibration sensitivity of the scanning near-field optical microscope with a tapered optical fiber probe. Ultramicroscopy 102, 85–92 (2005)

    Article  Google Scholar 

  8. I.C. Chen, L.H. Chen, X.R. Ye, C. Daraio, S. Jin, C.A. Orme et al., Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl. Phys. Lett. 88, 153102:1–153102:3 (2006)

  9. J.H. Lee, B.S. Lee, Modal analysis of carbon nanotubes and nanocones using FEM. Comput. Mater. Sci. 51, 30–42 (2012)

    Article  Google Scholar 

  10. M.M.S. Fakhrabadi, N. Khani, S. Pedrammehr, Vibrational analysis of single-walled carbon nanocones using molecular mechanics approach. Phys. E 44, 1162–1168 (2012)

    Article  Google Scholar 

  11. S.O. Gajbhiye, S.P. Singh, Multiscale analysis approach to find the dynamic characteristics of graphene sheet. Appl. Mech. Mater. 592–594, 1119–1124 (2014)

    Article  Google Scholar 

  12. S.O. Gajbhiye, S.P. Singh, A review of methodologies to multiscale modeling of nanostructures and nanocomposites, in International Conference on Functional Materials (ICFM-2014) (Materials Science Centre, Indian Institute of Technology, Kharagpur, India, 2014), February 5–7, 2014, p. 189

  13. C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  14. F. Scarpa, S. Adhikari, A mechanical equivalence for Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes. J. Phys. D Appl. Phys. 41, 1–5 (2008)

    Article  Google Scholar 

  15. M.M.S. Fakhrabadi, M. Samadzadeh, A. Rastgoo, M.H. Yazdi, M.M. Mashhadi, Vibrational analysis of carbon nanotubes using molecular mechanics and artificial neural network. Phys. E 44, 565–578 (2011)

    Article  Google Scholar 

  16. Y.-G. Hu, K.M. Liew, X.Q. He, Z. Li, J. Han, Free transverse vibration of single-walled carbon nanocones. Carbon 50, 4418–4423 (2012)

    Article  Google Scholar 

  17. R.D. Firouz-Abadi, M.M. Fotouhi, H. Haddadpour, Free vibration analysis of nanocones using a nonlocal continuum model. Phys. Lett. A 375, 3593–3598 (2011)

    Article  ADS  Google Scholar 

  18. S.-Q. Guo, S.-P. Yang, Axial vibration analysis of nanocones based on nonlocal elasticity theory. Acta. Mech. Sin. 28, 801–807 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  19. M.M. Fotouhi, R.D. Firouz-Abadi, H. Haddadpour, Free vibration analysis of nanocones embedded in an elastic medium using a nonlocal continuum shell model. Int. J. Eng. Sci. 64, 14–22 (2013)

    Article  MathSciNet  Google Scholar 

  20. R. Ansari, H. Rouhi, A. Nasiri Rad, Vibrational analysis of carbon nanocones under different boundary conditions: an analytical approach. Mech. Res. Commun. 56, 130–135 (2014)

    Article  Google Scholar 

  21. J.W. Yan, K.M. Liew, L.H. He, Predicting mechanical properties of single-walled carbon nanocones using a higher-order gradient continuum computational framework. Compos. Struct. 94, 3271–3277 (2012)

    Article  Google Scholar 

  22. R.D. Firouz-Abadi, H. Amini, A.R. Hosseinian, Assessment of the resonance frequency of cantilever carbon nanocones using molecular dynamics simulation. Appl. Phys. Lett. 100, 1–4 (2012)

    Article  Google Scholar 

  23. J.X. Wei, K.M. Liew, X.Q. He, Mechanical properties of carbon nanocones. Appl. Phys. Lett. 91, 1–3 (2007)

    Article  Google Scholar 

  24. S.P. Jordan, V.H. Crespi, Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object. Phys. Rev. Lett. 93, 1–4 (2004)

    Google Scholar 

  25. M.L. Liao, Buckling behaviors of open-tip carbon nanocones at elevated temperatures. Appl. Phys. A Mater. Sci. Process. 117, 1109–1118 (2014)

    Article  Google Scholar 

  26. J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988)

    Article  ADS  Google Scholar 

  27. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  ADS  Google Scholar 

  28. S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari et al., Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201 (2007)

    Article  ADS  Google Scholar 

  29. A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)

    Article  Google Scholar 

  30. B.R. Gelin, Molecular Modeling of Polymer Structures and Properties (Hanser/Gardner Publishers, Cincinnati, 1994)

    Google Scholar 

  31. P. Zhang, Y. Huang, P.H. Geubelle, P.A. Klein, K.C. Hwang, The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39, 3893–3906 (2002)

    Article  MATH  Google Scholar 

  32. A. Muc, Design and identification methods of effective mechanical properties for carbon nanotubes. Mater. Des. 31, 1671–1675 (2010)

    Article  Google Scholar 

  33. T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  MATH  ADS  Google Scholar 

  34. ANSYS® Academic Research, Release 14.0, Help System, Mechanical APDL, ANSYS, Inc

  35. H. Sun, P. Ren, J.R. Fried, The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 8, 229–246 (1998)

    Article  Google Scholar 

  36. A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae, A. Bachtold, Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 6, 339–342 (2011)

    Article  ADS  Google Scholar 

  37. H. Xie, S. Ŕgnier, In situ peeling of one-dimensional nanostructures using a dual-probe nanotweezer. Rev. Sci. Instrum. 81, 1–4 (2010)

    Google Scholar 

  38. P. Kim, C.M. Lieber, Nanotube nanotweezers. Science 286, 2148–2150 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin O. Gajbhiye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajbhiye, S.O., Singh, S.P. Vibration analysis of single-walled carbon nanocones using multiscale atomistic finite element method incorporating Tersoff–Brenner potential. Appl. Phys. A 120, 271–286 (2015). https://doi.org/10.1007/s00339-015-9185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9185-1

Keywords

Navigation