Skip to main content
Log in

Fish mucus metabolome reveals fish life-history traits

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Fish mucus has important biological and ecological roles such as defense against fish pathogens and chemical mediation among several species. A non-targeted liquid chromatography–mass spectrometry metabolomic approach was developed to study gill mucus of eight butterflyfish species in Moorea (French Polynesia), and the influence of several fish traits (geographic site and reef habitat, species taxonomy, phylogeny, diet and parasitism levels) on the metabolic variability was investigated. A biphasic extraction yielding two fractions (polar and apolar) was used. Fish diet (obligate corallivorous, facultative corallivorous or omnivorous) arose as the main driver of the metabolic differences in the gill mucus in both fractions, accounting for 23% of the observed metabolic variability in the apolar fraction and 13% in the polar fraction. A partial least squares discriminant analysis allowed us to identify the metabolites (variable important in projection, VIP) driving the differences between fish with different diets (obligate corallivores, facultative corallivores and omnivorous). Using accurate mass data and fragmentation data, we identified some of these VIP as glycerophosphocholines, ceramides and fatty acids. Level of monogenean gill parasites was the second most important factor shaping the gill mucus metabolome, and it explained 10% of the metabolic variability in the polar fraction and 5% in the apolar fraction. A multiple regression tree revealed that the metabolic variability due to parasitism in the polar fraction was mainly due to differences between non-parasitized and parasitized fish. Phylogeny and butterflyfish species were factors contributing significantly to the metabolic variability of the apolar fraction (10 and 3%, respectively) but had a less pronounced effect in the polar fraction. Finally, geographic site and reef habitat of butterflyfish species did not influence the gill mucus metabolome of butterflyfishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abro R, Moazzami AA, Lindberg JE, Lundh T (2014) Metabolic insights in Arctic charr (Salvelinus alpinus) fed with zygomycetes and fish meal diets as assessed in liver using nuclear magnetic resonance (NMR) spectroscopy. Int Aquat Res 6:1–11

    Article  Google Scholar 

  • Antwis RE, Haworth RL, Engelmoer DJP, Ogilvy V, Fidgett AL, Preziosi RF (2014) Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS One 9:e85563

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  PubMed  Google Scholar 

  • Block RC, Duff R, Lawrence P, Kakinami L, Brenna JT, Shearer GC, Meednu N, Mousa S, Friedman A, Harris WS, Larson M, Georas S (2009) The effects of EPA, DHA, and aspirin ingestion on plasma lysophospholipids and autotaxin. Prostanglandins Leukot Essent Fatty Acids 82:87–95

    Article  Google Scholar 

  • Boutin S, Bernatchez L, Audet C, Derôme N (2013) Network analysis highlights complex interactions between pathogen, host and commensal microbiota. PLoS One 8:e84772

    Article  PubMed  PubMed Central  Google Scholar 

  • Brinchmann MF (2016) Immune relevant molecules identified in the skin mucus of fish using -omics technologies. Mol Biosyst 12:2056–2063

    Article  CAS  PubMed  Google Scholar 

  • Chong-Seng KM, Cole AJ, Pratchett MS, Willis BL (2011) Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease. Coral Reefs 30:473–481

    Article  Google Scholar 

  • Cordero H, Brinchmann MF, Cuesta A, Messeguer J, Esteban MA (2015) Skin mucus proteome of European sea bass (Dicentrarchus labrax). Proteomics 15:4007–4020

    Article  CAS  PubMed  Google Scholar 

  • De’ath G (2002) Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83:1105–1117

    Google Scholar 

  • de Caralt S, Bry D, Bontemps N, Turon X, Uriz M-J, Banaigs B (2013) Sources of secondary metabolite variation in Dysidea avara (Porifera: Demospongiae): the importance of having good neighbors. Mar Drugs 11:489–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan J, Sugawara T, Sakai S, Aida K, Hirata T (2011) Oral glucosylceramide reduces 2,4-dinitrofluorobenzene induced inflammatory response in mice by reducing TNF-alpha levels and leukocyte infiltration. Lipids 46:505–512

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Sugawara T, Hirose M, Aida K, Sakai S, Fujii A, Hirata T (2012) Dietary sphingolipids improve skin barrier functions via the upregulation of ceramide synthases in the epidermis. Exp Dermatol 21:448–452

    Article  CAS  PubMed  Google Scholar 

  • Eckes M, Siebeck U, Dove S, Grutter A (2008) Ultraviolet sunscreens in reef fish mucus. Mar Ecol Prog Ser 353:203–211

    Article  CAS  Google Scholar 

  • Ekman DR, Skelton DM, Davis JM, Villeneuve DL, Cavallin JE, Schroeder A, Jensen AM, Ankley GT, Collette TW (2015) Metabolite profiling of fish skin mucus: a novel approach for minimally invasive environmental exposure monitoring and surveillance. Environ Sci Technol 49:3091–3100

    Article  CAS  PubMed  Google Scholar 

  • Exton JH (1994) Phosphatydilcholine breakdown and signal transduction. Biochim Biophys Acta 1212:26–42

    Article  CAS  PubMed  Google Scholar 

  • Fessler JL, Westneat MW (2007) Molecular phylogenetics of the butterflyfishes (Chaetodontidae): taxonomy and biogeography of a global coral reef fish family. Mol Phylogenet Evol 45:50–68

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Frias-Lopez J, Bonheyo GT, Jin Q, Fouke BW (2003) Cyanobacteria associated with coral black band disease in Caribbean and Indo-Pacific Reefs. Appl Environ Microbiol 69:2409–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghehdarijani MS, Hajimoradloo A, Ghorbani R, Roohi Z (2016) The effects of garlic-supplemented diets on skin mucosal immune responses, stress resistance and growth performance of the Caspian roach (Rutilus rutilius) fry. Fish Shellfish Immunol 49:79–83

    Article  CAS  PubMed  Google Scholar 

  • Hannun YA, Luberto C (2000) Ceramide in the eukaryotic stress response. Trends Cell Biol 10:73–80

    Article  CAS  PubMed  Google Scholar 

  • Harmelin-Vivien ML (1989) Implications of feeding specialization on the recruitment processes and community structure of butterflyfishes. Environ Biol Fish 25:101–110

    Article  Google Scholar 

  • Hay ME (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Ann Rev Mar Sci 1:193–212

    Article  PubMed  PubMed Central  Google Scholar 

  • He Q, Sun R, Liu H, Geng Z, Chen D, Li Y, Han J, Lin W, Du S, Deng Z (2014) NMR-based metabolomic analysis of spatial variation in soft corals. Mar Drugs 12:1876–1890

    Article  PubMed  PubMed Central  Google Scholar 

  • Heenan A, Williams ID (2013) Monitoring herbivorous fishes as indicators of coral reef resilience in American Samoa. PLoS One 8:e79604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hla T, Lee M-J, Ancellin N, Paik JH, Kluk MJ (2001) Lysophospholipids—receptor revelations. Science 294:1875–1878

    Article  CAS  PubMed  Google Scholar 

  • Huang S-C, Fritsche KL (1992) Alteration in mouse splenic phospholipid fatty acid composition and lymphoid cell populations by dietary fat. Lipids 27:25–32

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Ichi I, Nakahara K, Kiso K, Kojo S (2007) Effect of dietary cholesterol and high fat on ceramide concentration in rat tissues. Nutrition 23:570–574

    Article  CAS  PubMed  Google Scholar 

  • Ivanišević J, Thomas OP, Lejeusne C, Chevaldonné P, Pérez T (2011) Metabolic fingerprinting as an indicator of biodiversity: towards understanding inter-specific relationships among Homoscleromorpha sponges. Metabolomics 7:289–304

    Article  Google Scholar 

  • Johnson PTJ, Preston DL, Hoverman JT, LaFonte BE (2013) Host and parasite diversity jointly control disease risk in complex communities. Proc Natl Acad Sci U S A 110:16916–16921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallert DM, Bauer W, Haas W, El-Matbouli M (2011) No shot in the dark: myxozoans chemically detect fresh fish. Int J Parasitol 41:271–276

    Article  CAS  PubMed  Google Scholar 

  • Klueter A, Crandall JB, Archer FI, Teece MA, Coffroth MA (2015) Taxonomic and environmental variation of metabolite profiles in marine dinoflagellates of the genus Symbiodinium. Metabolites 5:74–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Kooke R, Keurentjes JJB (2011) Multi-dimensional regulation of metabolic networks shaping plant development and performance. J Exp Bot 63:3353–3365

    Article  PubMed  Google Scholar 

  • Kusano M, Baxter I, Fukishima A, Oikawa A, Okazaki Y, Nakabayashi R, Bouvrette DJ, Achard F, Jakubowski AR, Ballam JM, Phillips JR, Culler AH, Saito K, Harrigan GH (2015) Assessing metabolomic and chemical diversity of soybean lineage representing 35 years of breeding. Metabolomics 11:261–270

    Article  CAS  Google Scholar 

  • Lages BG, Fleury BG, Hovell AMC, Rezende CM, Pinto AC, Creed JC (2012) Proximity to competitors changes secondary metabolites of non-indigenous cup corals, Tubastraea spp., in the southwest Atlantic. Mar Biol 159:1551–1559

    Article  CAS  Google Scholar 

  • Lamy T, Legendre P, Chancerelle Y, Siu G, Claudet J (2015) Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: insights from beta-diversity decomposition. PLoS One 10:e0138696

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis RW (1970) Fish cutaneous mucus: a new source of skin surface lipid. Lipids 5:947–949

    Article  CAS  Google Scholar 

  • Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. doi:10.3389/fmicb.2014.00207

    PubMed  PubMed Central  Google Scholar 

  • Marcogliese DJ (2005) Parasites of the superorganism: are they indicators of ecosystem health? Int J Parasitol 35:705–716

    Article  PubMed  Google Scholar 

  • Matlock DB, Ginsburg DW, Paul VJ (1999) Spatial variability in secondary metabolite production by the tropical red alga Portieria hornemannii. Hydrobiologia 398–399:263–273

    Article  Google Scholar 

  • McLean S, Duncan AJ (2006) Pharmacological perspectives on the detoxification of plant secondary metabolites: implications for ingestive behavior of herbivores. J Chem Ecol 32:1213–1228

    Article  CAS  PubMed  Google Scholar 

  • Moore BD, Andrew RL, Külheim C, Foley WJ (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750

    Article  PubMed  Google Scholar 

  • Morash SC, Cook HW, Spence MW (1988) Phosphatidylcholine metabolism in cultured cells: catabolism via glycerophosphocholine. Biochim Biophys Acta 961:194–202

    Article  CAS  PubMed  Google Scholar 

  • Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9:261–285

    Article  Google Scholar 

  • Noguchi T, Arakawa O (2008) Tetrodotoxin—distribution and accumulation in aquatic organisms, and cases of human intoxication. Mar Drugs 6:220–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olff H, Alonso D, Berg MP, Eriksson BK, Loreau M, Piersma T, Rooney N (2009) Parallel ecological networks in ecosystems. Philos Trans R Soc Lond B Biol Sci 364:1755–1779

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) vegan: community ecology package. R package version 2.4.1

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  CAS  PubMed  Google Scholar 

  • Parsons HM, Ekman DR, Collette TW, Viant MR (2009) Spectral relative standard deviation: a practical benchmark in metabolomics. Analyst 134:478–485

    Article  CAS  PubMed  Google Scholar 

  • Pennings SC, Paul VJ (1993) Sequestration of dietary secondary metabolites by three species of sea hares: location, specificity and dynamics. Mar Biol 117:535–546

    Article  CAS  Google Scholar 

  • Pratchett MS (2005) Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Mar Biol 148:373–382

    Article  Google Scholar 

  • Purcell JE, Anderson PAV (1995) Electrical responses to water-soluble components of fish mucus recorded from the cnidocytes of a fish predator, Physalia physalis. Mar Freshw Behav Physiol 26:149–162

    Article  Google Scholar 

  • Quinn RA, Vermeij MJA, Hartmann AC, d’Auriac IG, Benler S, Haas A, Quistad SD, Lim YW, Little M, Sandin S, Smith JE, Dorrestein PC, Rohwer F (2016) Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc R Soc Lond B Biol Sci. doi:10.1098/rspb.2016.0469

    Google Scholar 

  • Rajan B, Fernandes JMO, Caipang CMA, Kiron V, Rombout JHWM, Brinchmann M (2011) Proteome reference map of the skin mucus of Atlantic cod (Gadus morhua) revealing immune competent molecules. Fish Shellfish Immunol 31:224–231

    Article  CAS  PubMed  Google Scholar 

  • Reverter M, Cutmore S, Bray R, Cribbs T, Sasal P (2016) Gill monogeneans (Platyhelminthes, Monogenea, Dactylogyridae) of butterflyfishes from the tropical Indo-West Pacific Islands. Parasitology 143:1580–1591

    Article  CAS  PubMed  Google Scholar 

  • Rohde S, Gochfeld DJ, Ankisetty S, Avula B, Schupp PJ, Slattery M (2012) Spatial variability in secondary metabolites of the Indo-Pacific sponge Stylissa massa. J Chem Ecol 38:463–475

    Article  CAS  PubMed  Google Scholar 

  • Roosta Z, Hajimoradloo A, Ghorbani R, Hoseinifar SH (2014) The effects of dietary vitamin C on mucosal immune responses and growth performance in Caspian roach (Rutilus rutilus caspicus) fry. Fish Physiol Biochem 40:1601–1607

    Article  CAS  PubMed  Google Scholar 

  • Sanchez LM, Wong WR, Riener RM, Schulze CJ, Linington RG (2012) Examining the fish microbiome: vertebrate-derived bacteria as an environmental niche for the discovery of unique marine natural products. PLoS One 7:e35398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shephard KL (1993) Mucus on the epidermis of fish and its influence on drug delivery. Adv Drug Del Rev 11:403–417

    Article  Google Scholar 

  • Silva TS, da Costa AMR, Conceição LEC, Dias JP, Rodrigues PML, Richard N (2014) Metabolic fingerprinting of gilthead seabream (Sparus aurata) liver to track interactions between dietary factors and seasonal temperature variations. PeerJ. doi:10.7717/peerj.527

    Google Scholar 

  • Sogin EM, Anderson P, Williams P, Chen C-S, Gates RD (2014) Application of 1H-NMR metabolomic profiling for reef-building corals. PLoS One 9:e111274

    Article  PubMed  PubMed Central  Google Scholar 

  • Sogin EM, Putnam HM, Anderson PE, Gates RD (2016) Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis. Metabolomics 12:1–12

    Article  CAS  Google Scholar 

  • Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  PubMed  Google Scholar 

  • Thoms C, Ebel R, Hentsche U, Proksch P (2003) Sequestration of dietary alkaloids by the spongivorous marine mollusc Tylodina perversa. Zeitschrift für Naturforschung C. doi:10.1515/znc-2003-5-623

    Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445:202–205

    Article  CAS  PubMed  Google Scholar 

  • Vignon M, Sasal P (2010) Multiscale determinants of parasite abundance: a quantitative hierarchical approach for coral reef fishes. Int J Parasitol 40:443–451

    Article  PubMed  Google Scholar 

  • Wen CKC, Bonin MC, Harrison HB, Williamson DH, Jones GP (2016) Dietary shift in juvenile coral trout (Plectropomus maculatus) following coral reef degradation from a flood plume disturbance. Coral Reefs 35:451–455

    Article  Google Scholar 

  • Wertz PW, Cho ES, Downing DT (1983) Effect of essential fatty acid deficiency on the epidermal sphingolipids of the rat. Biochim Biophys Acta 753:350–355

    Article  CAS  PubMed  Google Scholar 

  • Wolfender JL, Glauser G, Boccard J, Rudaz S (2009) MS-based plant metabolomic approaches for biomarker discovery. Nat Prod Comm 4:1417–1430

    CAS  Google Scholar 

  • Wu H, Southam AD, Hines A, Viant MR (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal Biochem 372:204–212

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ewen Morin, Julien Hirschinger and Teva Beguet for their help in the collection of butterflyfish. We would also like to thank Guillaume Iwankow for his assistance on Moorea’s cartography. This work was supported by the labex Corail project MECANO. This research is part of an EPHE Ph.D. thesis supported by a labex Corail doctoral grant awarded to M. Reverter. We would like to thank Karine Escoubeyrou for her assistance on high-resolution LC/MS/MS analysis. The analytical experiments have been performed using the Biodiversité et Biotechnologies Marines facilities (Bio2Mar, http://bio2mar.obs-banyuls.fr/fr/index.html) at the University of Perpignan via Domitia and the Banyuls-sur-Mer Oceanological Observatory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reverter.

Additional information

Communicated by Biology Editor Dr. Line K. Bay

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Partial least squares discriminant analysis (PLS-DA) score plot of the two first components (PLS1 and PLS2) of fish mucus metabolites detected in obligate corallivorous, facultative corallivorous and omnivorous butterflyfishes (EPS 57 kb)

Fig. S2

Heatmap of the metabolites from the apolar fraction with variable important in projection (VIP) scores > 1.5 issued from a partial least squares discriminant analysis (PLS-DA) model between fish with different diets (obligate corallivores, facultative corallivores and omnivores). Columns represent fish mucus samples and rows metabolites. * indicate identified VIP (see Table 3 for details on chemical structure) (EPS 268 kb)

Supplementary material 3 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reverter, M., Sasal, P., Banaigs, B. et al. Fish mucus metabolome reveals fish life-history traits. Coral Reefs 36, 463–475 (2017). https://doi.org/10.1007/s00338-017-1554-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-017-1554-0

Keywords

Navigation