Skip to main content
Log in

Alteration in mouse splenic phospholipid fatty acid composition and lymphoid cell populations by dietary fat

  • Article
  • Published:
Lipids

Abstract

The fatty acid composition of diacyl- and alkylacylglycerophosphocholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), alkenylacyl-glycerophosphoethanolamine (aPE), and diacyl- and alkylacyl-glycerophosphoethanolamine (dPE) was assessed in isolated splenocytes from C3H/Hen mice fed one of four purified isocaloric diets for six weeks. Diets contained 20% by weight of either a high-linoleate sunflower oil (Hi 18∶2), a high-oleate sunflower oil (Hi 18∶1), a mixture of 17% menhaden fish oil and 3% high-linoleate sunflower oil (Hi n−3), or a mixture of 17% coconut oil and 3% high-linoleate sunflower oil (Hi SFA). Spleen weight and immune cell yield were significantly higher (P<0.05) in mice fed the Hi 18∶1 or the Hi n−3 diets compared with those fed the Hi 18∶2 and Hi SFA diets. Distinctive patterns of fatty acids were observed for each phospholipid in response to dietary fatty acids. Dietary fat significantly affected (P<0.05) total polyunsaturated fatty acids (PUFA) in PC and dPE, total saturated fatty acids (SFA) in PC, total monounsaturated fatty acids (MUFA), and n−3 PUFA in all phospholipid classes examined. In mice fed the Hi n−3 diet, n−3 PUFA were significantly elevated, whereas n−6 PUFA decreased in all of the phospholipids. In these mice, eicosapentaenoic acid (EPA) was the predominant n−3 PUFA in PC and PI, whereas docosahexaenoic acid (DHA) was the major n−3 PUFA in aPE and PS. Interestingly, the ratios of n−3/n−6 PUFA in the phospholipids from these mice were 3.2, 2.4, 1.8, 0.8 and 0.8 for aPE, PS, dPE, PC and PI, respectively. These data suggest a preferential incorporation of n−3 PUFA into aPE, PS and dPE over PC and PI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

DHA:

docosahexaenoic acid

DPA:

docosapentaenoic acid

EPA:

eicosapentaenoic acid

FAME:

fatty acid methyl esters

GC:

gas chromatography

Hi 18∶1:

higholeate sunflower oil

Hi 18∶2:

high-linoleate sunflower oil

Hi n−3:

a mixture of 17% menhaden fish oil and 3% high-linoleate sunflower oil

Hi SFA:

a mixture of 17% coconut oil and 3% high-linoleate sunflower oil

HPTLC:

high-performance thin-layer chromatography

MUFA:

monounsaturated fatty acids

PC:

diacyl- and alkylacylglycerophosphocholine

aPE:

alkenylacyl-glycerophosphoethanolamine

dPE:

diacyl- and alkylacyl-glycerophosphoethanolamine

PI:

phosphatidylinositol

PMN:

polymorphonuclear leukocytes

PS:

phosphatidylserine

PUFA:

polyunsaturated fatty acids

SFA:

saturated fatty acids

TLC:

thin-layer chromatography

References

  1. King, M.E., and Spector, A.A. (1978)J. Biol. Chem. 253, 6493–6501.

    PubMed  CAS  Google Scholar 

  2. Stubbs, C.D., and Smith, A.D. (1984)Biochim. Biophys. Acta 779, 89–137.

    PubMed  CAS  Google Scholar 

  3. Neelands, P.J., and Clandinin, M.T. (1983)Biochem. J. 212, 573–583.

    PubMed  CAS  Google Scholar 

  4. Alam, S.Q., Alam, B.S., and Ren, Y.-F. (1987)J. Mol. Cell. Cardiol. 19, 465–475.

    Article  PubMed  CAS  Google Scholar 

  5. Surette, M.E., Croset, M., Lokesh, B.R., and Kinsella, J.E. (1990)Nutr. Res. 10, 211–218.

    Article  CAS  Google Scholar 

  6. Laposata, M., Kaiser, S.L., and Capriotti, A.M. (1988)J. Biol. Chem. 263, 3266–3273.

    PubMed  CAS  Google Scholar 

  7. Yeo, Y.K., Philbrick, D.-J., and Holub, B.J. (1989)Biochem. Biophys. Res. Commun. 160, 1238–1242.

    Article  PubMed  CAS  Google Scholar 

  8. Rola-Pleszczynski, M. (1990) inPlatelet-Activating Factor in Endotoxin and Immune Diseases (Handley, D.A., Saunders, R.N., Houlihan, W., and Tomesch, J.C., eds.) pp. 275–284. Marcel Dekker, New York.

    Google Scholar 

  9. Henderson, C.D., Black, H.S., and Wolf, Jr., J.E. (1989)Lipids 24, 502–505.

    PubMed  CAS  Google Scholar 

  10. Croft, K.D., Sturm, M.J., Codde, J.P., Vandongen, R., and Beilin, L.J. (1986)Life Sci. 38, 1875–1882.

    Article  PubMed  CAS  Google Scholar 

  11. Marshall, L.A., and Johnston, P.V. (1985)J. Nutr. 115, 1572–1578.

    PubMed  CAS  Google Scholar 

  12. Johnston, P.V. (1985)Adv. Lipid Res. 22, 257–287.

    Google Scholar 

  13. Erickson, K.L., Adams, D.A., and McNeill, C.J. (1983)Lipids 18, 468–474.

    PubMed  CAS  Google Scholar 

  14. DeWille, J.W., Fraker, P.J., and Romsos, D.R. (1979)J. Nutr. 109, 1018–1027.

    PubMed  CAS  Google Scholar 

  15. Lokesh, B.R., Hsieh, H.L., and Kinsella, J.E. (1986)Ann. Nutr. Metab. 30, 357–364.

    Article  PubMed  CAS  Google Scholar 

  16. Careaga-Houck, M., and Sprecher, H.W. (1989)J. Lipid Res., 30, 77–87.

    PubMed  CAS  Google Scholar 

  17. Berger, A., and German, B. (1990)Lipids 25, 473–480.

    PubMed  CAS  Google Scholar 

  18. Chapkin, R.S., and Carmichael, S.L. (1990)Lipids 25, 827–834.

    PubMed  CAS  Google Scholar 

  19. American Institute of Nutrition (1980)J. Nutr. 110, 1726.

    Google Scholar 

  20. Sun, G.Y. (1988) inLipids and Related Compounds (Boulton, A.A., Baker, G.B., and Horrocks, L.A., eds.), pp. 63–82. The Humana Press, Inc. Clifton.

    Google Scholar 

  21. Cinader, B., Clandinin, M.T., Hosokawa, T., and Robblee, N.M. (1983)Immunol. Lett. 6, 331–337.

    Article  PubMed  CAS  Google Scholar 

  22. Marshall, L.A., and Johnston, P.V. (1983)Lipids 18, 737–742.

    PubMed  CAS  Google Scholar 

  23. Conroy, D.M., Stubbs, C.D., Belin, J., Pryor, C.L. and Smith, A.D. (1986)Biochim. Biophys. Acta 861, 457–462.

    Article  PubMed  CAS  Google Scholar 

  24. Cleland, L.G., Gibson, R.A., Hawkes, J.S., and James, M.J. (1990)Lipids 25, 559–564.

    PubMed  CAS  Google Scholar 

  25. Furth, E.E., Hurtubise, V., Schott, M.A., and Laposata, M. (1989)J. Biol. Chem. 264, 18494–18501.

    PubMed  CAS  Google Scholar 

  26. Anderson, R.E. (1970)Exptl. Eye Res. 10, 339–344.

    Article  CAS  Google Scholar 

  27. Poovaiah, B.P.O., Tinoco, J., and Lyman, R.L. (1976)Lipids 11, 194–202.

    Article  PubMed  CAS  Google Scholar 

  28. Aukema, H.M., and Holub, B.J. (1989)J. Lipid Res. 30, 59–64.

    PubMed  CAS  Google Scholar 

  29. Fritsche, K.L., and Johnston, P.V. (1990)Nutr. Res. 10, 577–588.

    Article  CAS  Google Scholar 

  30. Novo, C., Fonseca, E., and Frietas, A.A. (1987)Cell. Immunol. 106, 387–396.

    Article  PubMed  CAS  Google Scholar 

  31. Chapkin, R.S., and Coble, K.J. (1991)J. Nutr. Biochem. 2, 158–164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Huang, SC., Fritsche, K.L. Alteration in mouse splenic phospholipid fatty acid composition and lymphoid cell populations by dietary fat. Lipids 27, 25–32 (1992). https://doi.org/10.1007/BF02537054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537054

Keywords

Navigation