Skip to main content
Log in

Unified Discrete Multisymplectic Lagrangian Formulation for Hyperelastic Solids and Barotropic Fluids

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We present a geometric variational discretization of nonlinear elasticity in 2D and 3D in the Lagrangian description. A main step in our construction is the definition of discrete deformation gradients and discrete Cauchy–Green deformation tensors, which allows for the development of a general discrete geometric setting for frame indifferent isotropic hyperelastic models. The resulting discrete framework is in perfect adequacy with the multisymplectic discretization of fluids proposed earlier by the authors. Thanks to the unified discrete setting, a geometric variational discretization can be developed for the coupled dynamics of a fluid impacting and flowing on the surface of an hyperelastic body. The variational treatment allows for a natural inclusion of incompressibility and impenetrability constraints via appropriate penalty terms. We test the resulting integrators in 2D and 3D with the case of a barotropic fluid flowing on incompressible rubber-like nonlinear models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Given the polar decomposition \({\mathbf {F}} ={\mathbf {R}}{\mathbf {U}}\) of the gradient deformation, the principal stretches \(\lambda _1, \lambda _2, \lambda _3\) are the eigenvalues of \({\mathbf {U}}\). In particular \(\lambda _1^2, \lambda _2^2, \lambda _3^2\) are the eigenvalues of \({\mathbf {C}} ={\mathbf {U}}^2\).

  2. For simplicity we didn’t write explicitly the dependence of the invariants on \( {\mathbf {G}} \) and assumed \({\mathbf {G}}_{ij}= \delta _{ij}\).

References

  • Angoshtari, A., Yavari, A.: A geometric structure-preserving discretization scheme for incompressible linearized elasticity. Comput. Methods Appl. Mech. Eng. 259, 130–153 (2013)

    Article  MathSciNet  Google Scholar 

  • Ariza, M.P., Ortiz, M.: Discrete crystal elasticity and discrete dislocations in crystals. Arch. Ration. Mech. Anal. 178(2), 149–226 (2005)

    Article  MathSciNet  Google Scholar 

  • Cirak, F., West, M.: Decomposition contact response (DCR) for explicit finite element dynamics. Int. J. Numer. Meth. Eng. 64, 1078–1110 (2005)

    Article  MathSciNet  Google Scholar 

  • Cottet, G.-H., Maitre, E., Milcent, T.: Eulerian formulation and level set models for incompressible fluid-structure interaction. ESAIM-Math. Model. Numer. Anal. 42(3), 471–492 (2008)

    Article  MathSciNet  Google Scholar 

  • Demoures, F., Gay-Balmaz, F., Ratiu, T.S.: Multisymplectic variational integrator and space/time symplecticity. Anal. Appl. 14(3), 341–391 (2014a)

    Article  MathSciNet  Google Scholar 

  • Demoures, F., Gay-Balmaz, F., Ratiu, T.S.: Multisymplectic variational integrators for nonsmooth Lagrangian continuum mechanics. Forum Math. Sigma 4(e19), 54p (2016)

    MathSciNet  MATH  Google Scholar 

  • Demoures, F., Gay-Balmaz, F., Desbrun, M., Ratiu, T.S., Alejandro, A.: A multisymplectic integrator for elastodynamic frictionless impact problems. Comput. Methods Appl. Mech. Eng. 315, 1025–1052 (2017)

    Article  MathSciNet  Google Scholar 

  • Demoures, F., Gay-Balmaz, F., Kobilarov, M., Ratiu, T.S.: Multisymplectic Lie group variational integrators for a geometrically exact beam in \({\mathbb{R} } ^3 \). Commun. Nonlinear Sci. Numer. Simulat. 19(10), 3492–3512 (2014b)

    Article  Google Scholar 

  • Demoures, F., Gay-Balmaz F.: Multisymplectic variational integrators for barotropic and incompressible fluid models with constraints, submitted (2021) arXiv:2102.10907

  • Gay-Balmaz, F., Marsden, J.E., Ratiu, T.S.: Reduced variational formulations in free boundary continuum mechanics. J. Nonlinear Sci. 22(4), 463–497 (2012)

    Article  MathSciNet  Google Scholar 

  • Gotay, M. J., Isenberg, J., Marsden, J. E., Montgomery, R., Sniatycki, J., Yasskin, P. B.: Momentum maps and classical fields. Part I: Covariant field theory. (1997) arXiv: physics/9801019

  • Glowinski, R., Pan, T.-W., Périaux, J.A.: Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving rigid bodies: (i) case where the rigid body motions are known a priori. CR Acad. Sci. Paris 25(5), 361–9 (1997)

    Article  MathSciNet  Google Scholar 

  • Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 135(2), 203–216 (1997)

    Article  Google Scholar 

  • Hou, G., Wang, J., Layton, A.: Numerical methods for fluid-structure interaction - a review. Commun. Comput. Phys. 12(2), 337–377 (2012)

    Article  MathSciNet  Google Scholar 

  • Kamrin, K., Rycroft, C.H., Nave, J.C.: Reference map technique for finite-strain elasticity and fluid-solid interaction. J. Mech. Phys. Solids 60(11), 1952–1969 (2012)

    Article  MathSciNet  Google Scholar 

  • Kanso, E., Marsden, J.E., Rowley, C., Melli-Huber, J.-H.: Locomotion of Articulated Bodies in a Perfect Fluid. J. Nonlinear Sci. 15, 255–289 (2005)

    Article  MathSciNet  Google Scholar 

  • Khayyer, A., Gotoh, H., Falahaty, H., Shimizu, Y.: An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput. Phys. Commun. 232, 139–164 (2018)

    Article  MathSciNet  Google Scholar 

  • Lefrançois, E., Boufflet, J.-P.: An introduction to fluid-structure interaction: Application to the piston problem. SIAM Rev. 52, 747–767 (2010)

    Article  MathSciNet  Google Scholar 

  • Lew, A., Marsden, J.E., Ortiz, M., West, M.: Asynchronous variational integrators. Arch. Rational Mech. Anal. 167(2), 85–146 (2003)

    Article  MathSciNet  Google Scholar 

  • van Loon, R., Anderson, P.D., van de Vosse, F.N., Sherwin, S.J.: Comparison of various fluid-structure interaction methods for deformable bodies. Comput. Struct. 85(11–14), 833–843 (2007)

    Article  Google Scholar 

  • Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall (1983)

  • Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators and nonlinear PDEs. Comm. Math. Phys. 199, 351–395 (1998)

    Article  MathSciNet  Google Scholar 

  • Marsden, J.E., Pekarsky, S., Shkoller, S., West, M.: Variational methods, multisymplectic geometry and continuum mechanics. J. Geom. Phys. 38, 253–284 (2001)

    Article  MathSciNet  Google Scholar 

  • Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  Google Scholar 

  • Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(6), 582–592 (1940)

    Article  Google Scholar 

  • Nocedal, J., Wright, S. J.: Numerical Optimization, Springer Series in Operations Research and Financial Engineering. Springer (2006)

  • Peskin, C.S., McQueen, D.M.: A three-dimensional computational method for blood flow in the heart i. immersed elastic fibers in a viscous incompressible fluid. J. Comp. Phys. 81, 372–405 (1989)

    Article  MathSciNet  Google Scholar 

  • Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  Google Scholar 

  • Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. A24I(6), 379–397 (1948)

    MathSciNet  MATH  Google Scholar 

  • Rivlin, R.S.: Large elastic deformations of isotropic materials. V. The problem of flexure. Proc. R. Soc. Lond. A195(6), 463–473 (1949)

    MathSciNet  MATH  Google Scholar 

  • Rivlin, R.S.: Large clastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure. Philos. Trans. R. Soc. A242(6), 173–195 (1949)

    MATH  Google Scholar 

  • Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35(2), 183–238 (1993)

    Article  MathSciNet  Google Scholar 

  • Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer-Verlag, Berlin (1998)

    Google Scholar 

  • Simo, J.C., Laursen, T.A.: An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42(1), 97–116 (1992)

    Article  MathSciNet  Google Scholar 

  • Yavari, A.: On geometric discretization of elasticity. J. Math. Phys. 49, 022901 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Gay-Balmaz.

Additional information

Communicated by Melvin Leok.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

1.1 2D Discrete Hyperelastic Models

To compute the partial derivatives \(D_k {\mathcal {L}} ^j_{a,b}\) of the discrete Lagrangian (34) we note

for all \(\ell =1,...,4\) and all \( k=1,3,5,7\). We observe that the 16 expressions are independent of the value of the field \( \varphi _d \) and on the location of the spacetime node (if the spacing \( \Delta s_a\) and \( \Delta s_b\) are constant), i.e., we can write . For instance, for \(\ell =1\), we have

$$\begin{aligned} D_1 {\mathbf {F}} _1 \cdot \delta \varphi&= \left[ - \frac{1}{ \Delta s_a} \delta \varphi , - \frac{1}{ \Delta s_b} \delta \varphi \right]&D_3 {\mathbf {F}} _1 \cdot \delta \varphi&= \left[ \frac{1}{ \Delta s_a} \delta \varphi , 0 \right] \\ D_5 {\mathbf {F}} _1 \cdot \delta \varphi&= \left[ 0 , \frac{1}{ \Delta s_b} \delta \varphi \right]&D_7 {\mathbf {F}} _1 \cdot \delta \varphi&= \left[ 0, 0 \right] \end{aligned}$$

and for \(\ell =2\), we have

$$\begin{aligned} D_1 {\mathbf {F}} _2 \cdot \delta \varphi&= \left[ 0 , \frac{1}{ \Delta s_a} \delta \varphi \right]&D_3 {\mathbf {F}} _2 \cdot \delta \varphi&= \left[ - \frac{1}{ \Delta s_b} \delta \varphi , - \frac{1}{ \Delta s_a} \delta \varphi \right] \\ D_7 {\mathbf {F}} _2 \cdot \delta \varphi&= \left[ \frac{1}{ \Delta s_b} \delta \varphi , 0 \right]&D_5 {\mathbf {F}} _2 \cdot \delta \varphi&= \left[ 0 , 0 \right] , \end{aligned}$$

similarly for \(\ell =3,4\). We can thus write

where in the last equality we defined the operator \({\mathfrak {D}}_k^\ell \), \(k=1,3,5,7\), \(\ell =1,2,3,4\), by duality.

From this, the partial derivatives \(D_k {\mathcal {L}} _{a,b}^j\) of the discrete Lagrangian can be computed. For instance for \(k=1\) one has

Using this result, one then derives (42) from (75).

1.2 3D Discrete Jacobian

1.3 3D Discrete Cauchy–Green Deformation Tensor

1.4 3D Derivatives of Impenetrability Constraints (77)

$$\begin{aligned} \begin{aligned} D_1\Psi _{\mathrm{im_1}}&= -(\varphi _{a-1,b,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{a,b-1,c}^j -\varphi _{a,b,c}^j) \\&\quad - (\varphi _{a,b-1,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{d,e,f}^j - \varphi _{a,b,c}^j ) \\&\quad - (\varphi _{d,e,f}^j - \varphi _{a,b,c}^j) \times (\varphi _{a-1,b,c}^j -\varphi _{a,b,c}^j), \\D_2\Psi _{\mathrm{im_1}}&= (\varphi _{a,b-1,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{d,e,f}^j - \varphi _{a,b,c}^j ), \\ D_3\Psi _{\mathrm{im_1}}&= (\varphi _{d,e,f}^j - \varphi _{a,b,c}^j ) \times (\varphi _{a-1,b,c}^j -\varphi _{a,b,c}^j), \\ D_4 \Psi _{\mathrm{im_1}}&= (\varphi _{a-1,b,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{a,b-1,c}^j -\varphi _{a,b,c}^j), \\ D_1\Psi _{\mathrm{im_2}}&= - (\varphi _{a,b-1,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{a+1,b,c}^j -\varphi _{a,b,c}^j) \\&\quad - (\varphi _{d+1,e,f}^j - \varphi _{a,b,c}^j ) \times (\varphi _{a,b-1,c}^j -\varphi _{a,b,c}^j) \\&\quad - (\varphi _{a+1,b,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{d+1,e,f}^j - \varphi _{a,b,c}^j ), \\ D_2\Psi _{\mathrm{im_2}}&= (\varphi _{d+1,e,f}^j - \varphi _{a,b,c}^j) \times (\varphi _{a,b-1,c}^j -\varphi _{a,b,c}^j), \\ D_3\Psi _{\mathrm{im_2}}&= (\varphi _{a+1,b,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{d+1,e,f}^j - \varphi _{a,b,c}^j), \\ D_4\Psi _{\mathrm{im_2}}&= (\varphi _{a,b-1,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{a+1,b,c}^j -\varphi _{a,b,c}^j), \\ D_1\Psi _{\mathrm{im_3}}&= - (\varphi _{a,b+1,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{a-1,b,c}^j -\varphi _{a,b,c}^j) \\&\quad -(\varphi _{d,e+1,f}^j - \varphi _{a,b,c}^j ) \times (\varphi _{a,b+1,c}^j -\varphi _{a,b,c}^j), \\&\quad - (\varphi _{a-1,b,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{d,e+1,f}^j - \varphi _{a,b,c}^j ), \\ D_2\Psi _{\mathrm{im_3}}&= (\varphi _{d,e+1,f}^j - \varphi _{a,b,c}^j ) \times (\varphi _{a,b+1,c}^j -\varphi _{a,b,c}^j), \\ D_3\Psi _{\mathrm{im_3}}&=(\varphi _{a-1,b,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{d,e+1,f}^j - \varphi _{a,b,c}^j ), \\ D_4\Psi _{\mathrm{im_3}}&= (\varphi _{a,b+1,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{a-1,b,c}^j -\varphi _{a,b,c}^j), \\ D_1\Psi _{\mathrm{im_4}}&= - (\varphi _{a+1,b,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{a,b+1,c}^j -\varphi _{a,b,c}^j) \\&\quad -(\varphi _{d+1,e+1,f}^j - \varphi _{a,b,c}^j ) \times (\varphi _{a+1,b,c}^j -\varphi _{a,b,c}^j) \\&\quad - (\varphi _{a,b+1,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{d+1,e+1,f}^j - \varphi _{a,b,c}^j), \\ D_2\Psi _{\mathrm{im_4}}&= (\varphi _{a,b+1,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{d+1,e+1,f}^j - \varphi _{a,b,c}^j), \\ D_3\Psi _{\mathrm{im_4}}&= (\varphi _{d+1,e+1,f}^j - \varphi _{a,b,c}^j) \times (\varphi _{a+1,b,c}^j -\varphi _{a,b,c}^j), \\ D_4\Psi _{\mathrm{im_4}}&= (\varphi _{a+1,b,c}^j -\varphi _{a,b,c}^j) \times (\varphi _{a,b+1,c}^j -\varphi _{a,b,c}^j). \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demoures, F., Gay-Balmaz, F. Unified Discrete Multisymplectic Lagrangian Formulation for Hyperelastic Solids and Barotropic Fluids. J Nonlinear Sci 32, 94 (2022). https://doi.org/10.1007/s00332-022-09849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09849-y

Keywords

Mathematics Subject Classification

Navigation