Skip to main content
Log in

Unified solid–fluid Lagrangian FEM model derived from hyperelastic considerations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

When writing movement equations in stresses for continuous media, it makes no difference whether the media are solid or fluid. The fundamental difference in the solution of these two problems relies on the respective constitutive laws. For solids, shear stresses are related to shear strains, resulting the Navier–Cauchy equation. For fluids, shear stresses are related to the time rate of shear strains, resulting in the Navier–Stokes equation. For solid and fluid isothermal problems, the pressure is related to the volumetric change. Based on hyperelastic solid mechanics equations, we present an alternative total Lagrangian unified model to simulate free surface compressive viscous isothermal fluid flow and simple viscoelastic solids. The proposed model is based on the deformation gradient multiplicative decomposition, which enables to establish a consistent Lagrangian constitutive law for quasi-Newtonian and non-Newtonian fluids, as well as for Kelvin–Voigt-like solids. The proposed constitutive model and the resulting positional prismatic finite element formulation are explored in numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  1. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Trans. Am. Math. Soc. 1–23 (1942)

  2. Argyris, J.H.: Energy theorems and structural analysis Part 1. Aircraft Eng. 26, 383 (1954)

  3. Turner, M.J., Clough, R.W., Martin, H.C., Topp, L.T.: Stiffness and deflection analysis of complex structures. J. Aeronaut. Sci. 25, 805–823 (1956)

    Article  MATH  Google Scholar 

  4. Clough, R.W.: Original formulation of the finite element method. In: Proc. ASCE Structures Congress Session on Computer Utilization in Structural Eng., San Francisco, pp 1–10 (1989)

  5. Zienkiewicz, O.C.: Cheung finite elements in the solution of field problems. Engineer 220, 507–510 (1965)

    Google Scholar 

  6. Bischoff, M., Ramm, E.: On the physical significance of higher order kinematic and static variables in a three-dimensional shell formulation. Int. J. Solids Struct. 37, 6933–6960 (2000)

    Article  MATH  Google Scholar 

  7. Sansour, C., Bednarczyk, H.: The Cosserat surface as a shell-model, theory and finite-element formulation. Comput. Methods Appl. Mech. Eng. 120(1–2), 1–32 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jeon, H.-M., Lee, Y., Lee, P.-S., et al.: The MITC3+shell element in geometric nonlinear analysis. Comput. Struct. 146, 91–104 (2015)

    Article  Google Scholar 

  9. Gruttmann, F., Wagner, W.: Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections. Comput. Mech. 27(3), 199–207 (2001)

    Article  MATH  Google Scholar 

  10. Benson, D.J., Bazilevs, Y., Hsu, M.-C., et al.: (2011) A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Eng. 200(13–16), 1367–1378 (2011)

    Article  MATH  Google Scholar 

  11. Havner, K.S.: On formulation and iterative solution of small strain plasticity problems. Q. Appl. Math. 23(4), 323–335 (1966)

    Article  Google Scholar 

  12. Miehe, C., Aldakheel, F., Mauthe, S.: Mixed variational principles and robust finite element implementations of gradient plasticity at small strains. Int. J. Numer. Methods Eng. 94(11), 1037–1074 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shutov, A.V., Landgraf, R., Ihlemann, J.: An explicit solution for implicit time stepping in multiplicative finite strain viscoelasticity. Comput. Methods Appl. Mech. Eng. 265, 213–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Latorre, M., Montans, J.F.: Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains. Comput. Mech. 56(3), 503–531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Holzapfel, G.A., Simo, J.C.: Entropy elasticity of isotropic rubber-like solids at finite strains. Comput. Methods Appl. Mech. Eng. 132(1–2), 17–44 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gasser, T.C., Holzapfel, G.A.: A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comput. Mech. 29(4–5), 340–360 (2002)

    Article  MATH  Google Scholar 

  17. Vergori, L., Destrade, M., McGarry, P., et al.: On anisotropic elasticity and questions concerning its finite element implementation. Comput. Mech. 52(5), 1185–1197 (2013)

    Article  MATH  Google Scholar 

  18. Chen, W.H., Chang, C.M., Yeh, J.T.: An incremental relaxation finite element analysis of viscoelastic problems with contact and friction. Comput. Methods Appl. Mech. Eng. 9, 315–319 (1993)

    Article  MATH  Google Scholar 

  19. Argyris, J., Doltsinis, I.S., Silva, V.D.: Constitutive modelling and computation of non linear viscoelastic solids. Part I: rheological models and integration techniques. Comput. Methods Appl. Mech. Engng. 88, 135–163 (1991)

    Article  MATH  Google Scholar 

  20. Holzapfel, G.A.: On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Methods Eng. 39, 3903–3926 (1996)

    Article  MATH  Google Scholar 

  21. Pascon, J.P., Coda, H.B.: Finite deformation analysis of visco-hyperelastic materials via solid tetrahedral finite elements. Finite Elem. Anal. Des. 133, 25–41 (2017)

    Article  MathSciNet  Google Scholar 

  22. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, E.H.: Elastic–plastic deformations at finite strains. J. Appl. Mech. (ASME) 36, 1–6 (1969)

    Article  MATH  Google Scholar 

  24. Simo, J.C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Methods Appl. Mech. Eng. 99(1), 61–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hudobivnik, B., Aldakheel, F., Wriggers, P.: A low order 3D virtual element formulation for finite elasto-plastic deformations. Comput. Mech. 63(2), 253–269 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reese, S., Wriggers, P.: A material model for rubber-like polymers exhibiting plastic deformation: computational aspects and a comparison with experimental results. Comput. Methods Appl. Mech. Eng. 148(3–4), 279–298 (1997)

    Article  MATH  Google Scholar 

  27. Jiao, Y., Fish, J.: On the equivalence between the multiplicative hyper-elasto-plasticity and the additive hypo-elasto-plasticity based on the modified kinetic logarithmic stress rate. Comput. Methods Appl. Mech. Eng. 340, 824–863 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chung, W.J., Cho, J.W., Belytschko, T.: On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng. Comput. 15(6–7), 750–776 (1998)

    Article  MATH  Google Scholar 

  29. Schwarze, M., Vladimirov, I.N., Reese, S.: Sheet metal forming and springback simulation by means of a new reduced integration solid-shell finite element technology. Comput. Methods Appl. Mech. Eng. 200(5–8), 454–476 (2011)

    Article  MATH  Google Scholar 

  30. Anderson, J.D.: Computational Fluid Dynamics—The Basics with Applications. McGraw-Hil, New York (1995)

    Google Scholar 

  31. Chung, T.J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  32. Zienkiewics, O.C., Taylor, R.L., Nithiarasu, P.: The Finite Element Method: Fluid Dynamics. Butterworth Heinemann Linacre House, Oxford (2005)

    Google Scholar 

  33. Reddy, J.N., Gartling, D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC Press, Boca Raton (2010)

    Book  MATH  Google Scholar 

  34. Elias, R.N., Martins, M.A.D., Coutinho, A.L.G.A.: Parallel edge-based solution of viscoplastic flows with the SUPG/PSPG formulation. Comput. Mech. 38(4–5), 365–381 (2006)

    Article  MATH  Google Scholar 

  35. Brooks, A.N., Hughes, T.J.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Akkerman, I., Bazilevs, Y., Calo, V.M., et al.: The role of continuity in residual-based variational multiscale modeling of turbulence. Comput. Mech. 41(3), 371–378 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992)

    MathSciNet  MATH  Google Scholar 

  38. Akin, J.E., Tezduyar, T.E.: Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput. Methods Appl. Mech. Eng. 193, 1909–1922 (2004)

    Article  MATH  Google Scholar 

  39. Takizawa, K., Tezduyar, T.E., Otoguro, Y.: Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations. Comput. Mech. 62(5), 1169–1186 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tezduyar, T.E., Osawa, Y.: Finite element stabilization parameters computed from element matrices and vectors. Comput. Methods Appl. Mech. Eng. 190(3), 411–430 (2000)

    Article  MATH  Google Scholar 

  41. Tezduyar, T.E., Senga, M.: Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput. Methods Appl. Mech. Eng. 195(13–16), 1621–1632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Donea, J., Giuliani, S., Halleux, J.P.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33(1–3), 689–723 (1982)

    Article  MATH  Google Scholar 

  43. Franci, A., Oñate, E., Carbonell, J.M.: Unified Lagrangian formulation for solid and fluid mechanics and FSI problems. Comput. Methods Appl. Mech. Eng. 298, 520–547 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Duarte, F., Gormaz, R., Srinivasan, N.: Arbitrary Lagrangian–Eulerian method for Navier–Stokes equations with moving boundaries. Comput. Methods Appl. Mech. Eng. 193, 4819–4836 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tezduyar, T.E., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Engng. 94, 339–351 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tezduyar, T.E., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial- domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Engng. 94, 353–371 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Idelsohn, S.R., Marti, J., Limache, A., Oñate, E.: Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput. Methods Appl. Mech. Eng. 197, 1762–1776 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Idelsohn, S.R., Oñate, E., Pin, F.D., Calvo, N.: Fluid-structure interaction using the particle finite element method. Comput. Methods Appl. Mech. Eng. 195, 2100–2123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Radovitzky, R., Ortiz, M.: Lagrangian finite element analysis of Newtonian fluid flows. Int. J. Numer. Methods Eng. 43(4), 607–617 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000)

    MATH  Google Scholar 

  51. Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  52. Rivlin, R., Saunders, D.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Ser. A 243, 251–288 (1951)

    Article  MATH  Google Scholar 

  53. Düster, A., Hartmann, S., Rank, E.: p-FEM applied to finite isotropic hyperelastic bodies. Comput. Methods Appl. Mech. Eng 192, 5147–5166 (2003)

    Article  MATH  Google Scholar 

  54. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  55. Lánczos, C.: The Variational Principles of Mechanics. Dover, New York (1970)

    MATH  Google Scholar 

  56. Sanches, R.A.K., Coda, H.B.: Unconstrained vector nonlinear dynamic shell formulation applied to Fluid Structure Interaction. Comput. Methods Appl. Mech. Eng. 259, 177–196 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Holmes, M.J., et al.: Temperature dependence of bulk viscosity in water using acoustic spectroscopy. J. Phys. Conf. Ser. 269 (2011)

  58. Coda, H.B.: Continuous inter-laminar stresses for regular and inverse geometrically non linear dynamic and static analyses of laminated plates and shells. Compos. Struct. 132, 406–422 (2015)

    Article  Google Scholar 

  59. Coda, H.B., Paccola, R.R.: A FEM procedure based on positions and unconstrained vectors applied to non-linear dynamic of 3D frames. Finite Elem. Anal. Des. 47(4), 319–333 (2011)

    Article  Google Scholar 

  60. Pascon, J.P., Coda, H.B.: High-order tetrahedral finite elements applied to large deformation analysis of functionally graded rubber-like materials. Appl. Math. Model. 37(20–21), 8757–8775 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Martin, J.C., Motce, W.J.: An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans. R. Soc. Lond. Ser. A 244, 312–324 (1958)

    Google Scholar 

  62. Nithiarasu, P.: An arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic-based split (CBS) scheme. Int. J. Numer. Methods Fluids 48, 1415–1428 (2005)

    Article  MATH  Google Scholar 

  63. Nithiarasu, P.: Erratum an arbitrary Lagrangian Eulerian (ALE) formulation for free surface flows using the characteristic based split (CBS) scheme (Int. J. Numer. Meth. Fluids 2005; 48:1415–1428). Int. J. Numer. Methods Fluids 50, 1119–1120 (2006)

    Article  Google Scholar 

  64. Laitone, E.V.: The second approximation to conoidal and solitary waves. J. Fluid Mech. 9, 430–444 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  65. Sung, J., Choi, H.G., Yoo, J.Y.: Time-accurate computation of unsteady free surface flows using an ALE-segregated equal-order FEM. Comput. Methods Appl. Mech. Eng. 190(11–12), 1425–1440 (2000)

    Article  MATH  Google Scholar 

  66. Bouvet, A., Ghorbel, E., Bennacer, R.: The mini-conical slump flow test: analysis and numerical study. Cem. Concr. Res. 40, 1517–1523 (2010)

    Article  Google Scholar 

  67. Carrazedo, R., Paccola, R.R., Coda, H.B.: Vibration and stress analysis of orthotropic laminated panels by active face prismatic finite element. Compos. Struct. 244, 112254 (2020)

    Article  Google Scholar 

  68. Carrazedo, R., Coda, H.B.: Triangular based prismatic finite element for the analysis of orthotropic laminated beams, plates and shells. Compos. Struct. 168, 234–246 (2018)

    Article  Google Scholar 

  69. Fazekas, B., Goda, T.: Characterisation of large strain viscoelastic properties of polymers. Bánki Közlemények 1(1) (2018)

Download references

Funding

This research has been supported by the São Paulo Research Foundation, Brazil—Grant #2020/05393-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Breves Coda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix, we show the shear stress behavior as a function of the dimensionless parameter \(\gamma_{i}\) for constant strain time rate. Before doing so, it is important to mention that both Lagrangian and Eulerian time rates are considered, and that no units were used in the analysis.

The numerical test consists of a stretched unitary cube (linear approximation), see Fig. 

Fig. 39
figure 39

Numerical test—geometry, discretization, and stress calculation

39, with nodes at \(x_{i} = 0\) constrained at \(x_{i}\) direction. Velocity is imposed by moving nodes at face \(x_{1} = 1\) to the right in two ways: (i) for Lagrangian analysis, the current positions are given by \(y_{1} = 1 + v \cdot t\), and (ii) for Eulerian analysis \(y_{1} = e^{(v \cdot t)}\) and, in this test, correspond to the longitudinal stretch \(\lambda\). The adopted face velocity is \(v = 1\), the time step is \(4.0 \times 10^{ - 4}\), the density is \(\rho = 0\), and viscosity \(\mu = 1.0 \times 10^{ - 3}\). The Cauchy shear stress is calculated as \(\sigma_{12} = (\sigma_{11} - \sigma_{22} )/2\).

In Fig. 

Fig. 40
figure 40

Cauchy shear stress calculated for Lagrangian strain velocity

40, we present the behavior of the Cauchy shear stress \(\sigma_{12}\) as a function of \(\gamma_{1} = \gamma_{2}\) and \(\overline{G}_{1} = \overline{G}_{2}\) for Lagrangian velocity, and in Fig. 

Fig. 41
figure 41

Cauchy shear stress calculated for Eulerian strain velocity

41 the shear stress is presented for the Eulerian velocity. The values of \(\overline{G}_{i}\) should also vary because constants \(\gamma_{i}\) divide the stress expression (47).

From Fig. 40, we conclude that a “Lagrangian” quasi-Newtonian fluid can be modeled by adopting \(\gamma_{i} = 1.0\) and \(\overline{G}_{i} = 1.5\mu\). From Fig. 41, we conclude that an “Eulerian” quasi-Newtonian fluid can be modeled by adopting \(\gamma_{i} = 0.5\) and \(\overline{G} = 3\mu\). In Examples 4.1 and 4.2, the Eulerian quasi-Newtonian relations are adopted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coda, H.B., Sanches, R.A.K. Unified solid–fluid Lagrangian FEM model derived from hyperelastic considerations. Acta Mech 233, 2653–2685 (2022). https://doi.org/10.1007/s00707-022-03237-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03237-z

Navigation