Skip to main content
Log in

Discrete Crystal Elasticity and Discrete Dislocations in Crystals

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This article is concerned with the development of a discrete theory of crystal elasticity and dislocations in crystals. The theory is founded upon suitable adaptations to crystal lattices of elements of algebraic topology and differential calculus such as chain complexes and homology groups, differential forms and operators, and a theory of integration of forms. In particular, we define the lattice complex of a number of commonly encountered lattices, including body-centered cubic and face-centered cubic lattices. We show that material frame indifference naturally leads to discrete notions of stress and strain in lattices. Lattice defects such as dislocations are introduced by means of locally lattice-invariant (but globally incompatible) eigendeformations. The geometrical framework affords discrete analogs of fundamental objects and relations of the theory of linear elastic dislocations, such as the dislocation density tensor, the equation of conservation of Burgers vector, Kröner's relation and Mura's formula for the stored energy. We additionally supply conditions for the existence of equilibrium displacement fields; we show that linear elasticity is recovered as the Γ-limit of harmonic lattice statics as the lattice parameter becomes vanishingly small; we compute the Γ-limit of dilute dislocation distributions of dislocations; and we show that the theory of continuously distributed linear elastic dislocations is recovered as the Γ-limit of the stored energy as the lattice parameter and Burgers vectors become vanishingly small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, F.F., Schneider, D., Land, B., Lifka D., Skovira, J., Gerner, J., Rosenkrantz, M.: Instability dynamics in the 3-dimensional fracture - an atomistic simulation. Journal of the Mechanics and Physics of Solids 45, 1461–1471 (1997)

    Article  Google Scholar 

  2. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis and Applications. Addison-Wesley, London, 1983

  3. Bacon, D.J., Barnett, D.M., Scattergood, R.O.: Anisotropic Continuum Theory of Lattice Defects. Progress in Material Sciences 23, 51–262 (1979)

    Article  Google Scholar 

  4. Born, M., Huang, K.: Dynamical theory of crystal lattices. Oxford University Press, London, 1954

  5. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer-Verlag, 1982

  6. Bradley, C.J., Cracknell, A.P.: The Mathematical Theory of Symmetry in Solids. Clarendon Press, Oxford, 1972

  7. Braides, A., Gelli, M.S.: The passage from discrete to continuous variational problems: a nonlinear homogenization process. In: P.Ponte Castaneda, editor, Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials. Kluwer, 2004

  8. Cioranescu, D., Donato, P.: An Introduction to Homogeneization. Oxford University Press, 1999

  9. Cuitiño, A.M., Ortiz, M.: Computational modeling of single-crystals. Modelling and Simulation in Materials Science and Engineering 1, 225–263 (1993)

    Article  Google Scholar 

  10. Dal Maso, G.: An Introduction to Γ-Convergence. Birkhauser, Boston, 1993

  11. Daw, M.S.: The embedded atom method: A review. In Many-Atom Interactions in Solids, of Springer Proceedings in Physics, Springer-Verlag, Berlin, 48, pp. 49–63 1990

  12. Ericksen, J.L.: On the symmetry of deformable crystrals. Archive for Rational Mechanics and Analysis 72, 1–13 (1979)

    Article  Google Scholar 

  13. Finnis, M.W., Sinclair, J.E.: A simple empirical n-body potential for transition- metals. Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties 50, 45–55 (1984)

    Google Scholar 

  14. Garroni, A., Müller, S.: Γ-limit of a phase-field model of dislocations. Preprint 92, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany, 2003

  15. Garroni, A., Müller, S.: A variational model for dislocations in the line tension limit. Preprint 76, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany, 2004

  16. Hamermesh, M.: Group Theory and its Applications to Physical Problems. Dover Publications, New York, 1962

  17. Hansen, N., Kuhlmann-Wilsdorff, D.: Low Energy Dislocation Structures due to Unidirectional Deformation at Low Temperatures. Materials Science and Engineering 81, 141–161 (1986)

    Article  Google Scholar 

  18. Hirani, A.: Discrete Exterior Calculus. PhD thesis, California Institute of Technology, 2003

  19. Hirth, J.P., Lothe, J.: Theory of Dislocations. McGraw-Hill, New York, 1968

  20. Holz, A.: Topological properties of linked disclinations in anisotropic liquids. Journal of Physics A 24, L1259–L1267 (1991)

    Google Scholar 

  21. Holz, A.: Topological properties of linked disclinations and dislocations in solid continua. Journal of Physics A 25, L1–L10 1992

    Google Scholar 

  22. Holz, A.: Topological properties of static and dynamic defect configurations in ordered liquids. Physica A 182, 240–278 (1992)

    Google Scholar 

  23. Kleman, M., Michel, L., Toulouse, G.: Classification of topologically stable defects in ordered media. Journal de Physique 38, L195–L197 (1977)

    Google Scholar 

  24. Koslowski, M., Cuiti no, A.M., Ortiz, M.: A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals. Journal of the Mechanics and Physics of Solids 50, 2597–2635 (2002)

    Article  Google Scholar 

  25. Koslowski, M., Ortiz, M.: A multi-phase field model of planar dislocation networks. Modeling and Simulation in Materials Science and Engineering 12, 1087–1097 (2004)

    Article  Google Scholar 

  26. Kröner, E.: Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls. Zeitung der Physik 151, 504–518 (1958)

    Article  Google Scholar 

  27. Kuhlmann-Wilsdorf, D.: Theory of plastic deformation: properties of low energy dislocation structures. Materials Science and Engineering A113, 1 (1989)

    Google Scholar 

  28. Leok, M.: Foundations of Computational Geometric Mechanics. PhD thesis, California Institute of Technology, 2004

  29. Lubarda, V.A., Blume, J.A., Needleman, A.: An Analysis of Equilibrium Dislocation Distributions. Acta Metallurgica et Materialia 41, 625–642 (1993)

    Article  Google Scholar 

  30. Mermin, N.D.: The topological theory of defects in ordered media. Reviews of Modern Physics 51, 591–648 (1979)

    Article  Google Scholar 

  31. Morgan, F.: Geometric Measure Theory. Academic Press, London, 2000

  32. Moriarty, J.A.: Angular forces and melting in bcc transition-metals – a case-study of molybdenum. Physical Review B 49, 12431–12445 (1994)

    Article  Google Scholar 

  33. Mughrabi, H.: Description of the Dislocation Structure after Unidirectional Deformation at Low Temperatures. In A.S. Argon, editor, Constitutive Equations in Plasticity, Cambridge, Mass, 1975. MIT Press pp. 199–250

  34. Munkres, J.R.: Elements of Algebraic Topology. Perseus Publishing, 1984

  35. Mura, T.: Continuous distribution of moving dislocations. Philosophical Magazine 8, 843 (1963)

    Google Scholar 

  36. Mura, T.: Micromechanics of defects in solids. Kluwer Academic Publishers, Boston, 1987

  37. Neumann, P.: Low Energy Dislocation Configurations: A Possible Key to the Understanding of Fatigue. Materials Science and Engineering 81, 465–475 (1986)

    Article  Google Scholar 

  38. Nye, J.F.: Some geometrical relations in dislocated crystals. Acta Metallurgica 1, 153–162 (1953)

    Article  Google Scholar 

  39. Ortiz, M., Phillips, R.: Nanomechanics of defects in solids. Advances in Applied Mechanics 36, 1–79 (1999)

    Google Scholar 

  40. Peierls, R.E.: The Size of a Dislocation. Proceedings of the Royal Society of London A52, 34 (1940)

  41. Pettifor, D.G., Oleinik, I.I., Nguyen-Manh, D., Vitek, V.: Bond-order potentials: bridging the electronic to atomistic modelling hierarchies. Computational Materials Science 23, 33–37 (2002)

    Article  Google Scholar 

  42. Rudin, W.: Functional Analysis. McGraw-Hill, 1991

  43. Sarkar, S.K., Sengupta, S.: On born-huang invariance conditions. Phys. Status Solidi (b) 83, 263–271 (1977)

    Google Scholar 

  44. Schwarzenberger, R.L.E.: Classification of crystal lattices. Proceedings of the Cambridge Philosophical Society 72, 325–349 (1972)

    Google Scholar 

  45. Sengupta, S.: Lattice Theory of Elastic Constants. Trans Tech Publications, Aedermannsdorf, Switzerland, 1988

  46. Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985)

    Article  Google Scholar 

  47. Toulouse, G., Kleman, M.: Principles of a classification of defects in ordered media. Journal de Physique 37, L149–L151 (1976)

    Google Scholar 

  48. Trebin, H.R.: The topology of non-uniform media in condensed matter physics. Advances in Physics 31, 195–254 (1982)

    Google Scholar 

  49. Wang, C.C.: On representations for isotropic functions .i. isotropic functions of symmetric tensors and vectors. Archive for Rational Mechanics and Analysis 33, 249 (1969)

    Google Scholar 

  50. Yuan, X.Y., Takahashi, K., Ouyang, Y.F., Onzawa, A.: Development of a modified embedded atom method for bcc transition metals. Journal of Physics-Condensed Matter 15, 8917–8926 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ortiz.

Additional information

Communicated by the Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ariza, M., Ortiz, M. Discrete Crystal Elasticity and Discrete Dislocations in Crystals. Arch. Rational Mech. Anal. 178, 149–226 (2005). https://doi.org/10.1007/s00205-005-0391-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0391-4

Keywords

Navigation