Skip to main content
Log in

On a Regularized Family of Models for Homogeneous Incompressible Two-Phase Flows

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider a general family of regularized models for incompressible two-phase flows based on the Allen–Cahn formulation in \(n\)-dimensional compact Riemannian manifolds for \(n=2,3\). The system we consider consists of a regularized family of Navier–Stokes equations (including the Navier–Stokes-\(\alpha \)-like model, the Leray-\(\alpha \) model, the modified Leray-\(\alpha \) model, the simplified Bardina model, the Navier–Stokes–Voight model, and the Navier–Stokes model) for the fluid velocity \(u\) suitably coupled with a convective Allen–Cahn equation for the order (phase) parameter \(\phi \). We give a unified analysis of the entire three-parameter family of two-phase models using only abstract mapping properties of the principal dissipation and smoothing operators and then use assumptions about the specific form of the parameterizations, leading to specific models, only when necessary to obtain the sharpest results. We establish existence, stability, and regularity results and some results for singular perturbations, which as special cases include the inviscid limit of viscous models and the \(\alpha \rightarrow 0\) limit in \(\alpha \) models. Then we show the existence of a global attractor and exponential attractor for our general model and establish precise conditions under which each trajectory \(\left( u,\phi \right) \) converges to a single equilibrium by means of a Lojasiewicz–Simon inequality. We also derive new results on the existence of global and exponential attractors for the regularized family of Navier–Stokes equations and magnetohydrodynamics models that improve and complement the results of Holst et al. (J Nonlinear Sci 20(5):523–567, 2010). Finally, our analysis is applied to certain regularized Ericksen–Leslie models for the hydrodynamics of liquid crystals in \(n\)-dimensional compact Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abels, H.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194, 463–506 (2009a)

    Article  MATH  MathSciNet  Google Scholar 

  • Abels, H.: Longtime behavior of solutions of a Navier–Stokes/Cahn–Hilliard system, Nonlocal and abstract parabolic equations and their applications, 9–19, Banach Center Publ., 86, Polish Acad. Sci. Inst. Math., Warsaw (2009b)

  • Abels, H., Feireisl, E.: On a diffuse interface model for a two-phase flow of compressible viscous fluids. Indiana Univ. Math. J. 57, 659–698 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, D.M.; McFadden, G.B.; Wheeler, A.A.: Diffuse-interface methods in fluid mechanics, Annual Review of Fluid Mechanics, vol. 30, Annual Reviews, Palo Alto, CA, pp. 139–165 (1998)

  • Badalassi, V.E., Ceniceros, H.D., Banerjee, S.: Computation of multiphase systems with phase field models. J. Comput. Phys. 190, 371–397 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Bakry, D., Coulhon, T., Ledoux, M., Saloff-Coste, L.: Sobolev inequalities in disguise. Indiana Univ. Math. J. 44(4), 1033–1074 (1995)

    Article  MathSciNet  Google Scholar 

  • Blesgen, T.: A generalization of the Navier–Stokes equation to two-phase flows. J. Phys. D (Appl. Phys.) 32, 1119–1123 (1999)

    Article  Google Scholar 

  • Bosia, S.: Well-posedness and long term behavior of a simplified Ericksen-Leslie nonautonomous system for nematic liquid crystal flow. Comm. Pure Appl. Anal. 11, 407–441 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Boyer, F.: Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal. 20, 175–212 (1999)

    MATH  MathSciNet  Google Scholar 

  • Boyer, F.: Nonhomogeneous Cahn–Hilliard fluids. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 225–259 (2001)

  • Boyer, F.: A theoretical and numerical model for the study of incompressible mixture flows. Comput. Fluids 31, 41–68 (2002)

    Article  MathSciNet  Google Scholar 

  • Boyer, F., Fabrie, P.: Persistency of 2D perturbations of one-dimensional solutions for a Cahn–Hilliard flow model under high shear. Asymptot. Anal. 33, 107–151 (2003)

    MATH  MathSciNet  Google Scholar 

  • Bray, A.J.: Theory of phase-ordering kinetics. Adv. Phys. 51, 481–587 (2002)

    Article  MathSciNet  Google Scholar 

  • Cao, C., Gal, C.G.: Global solutions for the 2D NS–CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility. Nonlinearity 25(11), 3211–3234 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Ceccon, J., Montenegro, M.: Optimal \(L^{p}\)-Riemannian Gagliardo–Nirenberg inequalities. Math. Z. 258(4), 851–873 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Ceccon, J., Montenegro, M.: Optimal Riemannian \(L^{p}\)-Gagliardo–Nirenberg inequalities revisited. J. Differ. Equ. 254(6), 2532–2555 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Chella, R., Viñals, J.: Mixing of a two-phase fluid by a cavity flow. Phys. Rev. E 53, 3832–3840 (1996)

    Article  Google Scholar 

  • Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79(2), 561–596 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Chill, R., Jendoubi, M.A.: Convergence to steady states of solutions of non-autonomous heat equations in \(\mathbb{R}^{N}\). J. Dyn. Differ. Equ. 19(3), 777–788 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Climent-Ezquerra, B., Guillen-Gonzalez, F., Moreno-Iraberte, M.J.: Regularity and time-periodicity for a nematic liquid crystal model. Nonlinear Anal. 71, 539–549 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Conti, M., Pata, V.: On the regularity of global attractors. DCDS-A 25, 1209–1217 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Du, Q., Liu, C., Ryham, R., Wang, X.: A phase field formulation of the Willmore problem. Nonlinearity 18, 1249–1267 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Du, Q., Li, M., Liu, C.: Analysis of a phase field Navier–Stokes vesicle-fluid interaction model. Discret. Contin. Dyn. Syst. Ser. B 8, 539–556 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Ding, S., Li, Y., Luo, W.: Global solutions for a coupled compressible Navier–Stokes/Allen–Cahn system in 1D. J. Math. Fluid Mech. 15(2), 335–360 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Ericksen, J.L.: Continuum theory of nematic liquid crystals. Res. Mechanica. 21, 381–39 (1987)

    MathSciNet  Google Scholar 

  • Fabrie, P., Galusinski, C., Miranville, A., Zelik, S.: Uniform exponential attractors for singularly perturbed damped wave equations. Discret. Contin. Dyn. Syst. 10(2), 211–238 (2004)

    MATH  MathSciNet  Google Scholar 

  • Feireisl, E., Petzeltová, H., Rocca, E., Schimperna, G.: Analysis of a phase-field model for two-phase compressible fluids. Math. Models Methods Appl. Sci. 20, 1129–1160 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comput. 76, 539–571 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Gal, C.G., Grasselli, M.: Asymptotic behavior of a Cahn–Hilliard–Navier–Stokes system in 2D. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 401–436 (2010a)

  • Gal, C.G., Grasselli, M.: Longtime behavior for a model of homogeneous incompressible two-phase flows. Discret. Contin. Dyn. Syst. 28, 1–39 (2010b)

    Article  MATH  MathSciNet  Google Scholar 

  • Gal, C.G., Grasselli, M.: Trajectory attractors for binary fluid mixtures in 3D. Chin. Ann. Math. Ser. B 31(5), 655–678 (2010c)

    Article  MATH  MathSciNet  Google Scholar 

  • Gal, C.G., Grasselli, M.: Instability of two-phase flows: a lower bound on the dimension of the global attractor of the Cahn–Hilliard–Navier–Stokes system. Phys. D 240(7), 629–635 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Gal, C.G.; Medjo, T.T.: Approximation of the trajectory attractor for a 3D model of incompressible fluid flows. Comm. Pure Appl. Anal. 13(6), 2229–2252 (2014)

  • Gal, C.G., Medjo, T.T.: A Navier–Stokes–Voight model with memory. Math. Meth. Appl. Sci. 36, 2507–2523 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Gatti, S., Miranville, A., Pata, V., Zelik, S.: Continuous families of exponential attractors for singularly perturbed equations with memory. Proc. R. Soc. Edinb. 140A, 1–38 (2010)

    MathSciNet  Google Scholar 

  • Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Meth. Appl. Sci. 6, 8–15 (1996)

    Article  Google Scholar 

  • Grasselli, M., Wu, H.: Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow. Z. Angew. Math. Phys. 62, 979–992 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Guillen-Gonzalez, F., Rodriguez-Bellido, M.A., Rojas-Medar, M.A.: Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model. Math. Nachr. 282, 846–867 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Hale, J.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  • Haraux, A.: Systèmes dynamiques dissipatifs et applications. Masson, Paris (1991)

    MATH  Google Scholar 

  • Hebey, E.: Nonlinear analysis on manifolds: Sobolev spaces and inequalities. American Mathematical Society, Providence, RI (1999)

    Google Scholar 

  • Hohenberg, P.C., Halperin, B.I.: Theory of dynamical critical phenomena. Rev. Mod. Phys. 49, 435–479 (1977)

    Article  Google Scholar 

  • Holst, M., Lunasin, E., Tsogtgerel, G.: Analysis of a general family of regularized Navier–Stokes and MHD models. J. Nonlinear Sci. 20(5), 523–567 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Horgan, C.: Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37, 491–511 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Jacqmin, D.: Calculation of two-phase Navier-Stokes flows using phase-field modelling. J. Comput. Phys. 155, 96–127 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Jendoubi, M.A.: A simple unified approach to some convergence theorem of L. Simon. J. Funct. Anal. 153, 187–202 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Jasnow, D., Viñals, J.: Coarse-grained description of thermo-capillary flow. Phys. Fluids 8, 660–669 (1996)

    Article  MATH  Google Scholar 

  • Kay, D., Styles, V., Welford, R.: Finite element approximation of a Cahn–Hilliard–Navier–Stokes system. Interfaces Free Bound. 10, 15–43 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Kalantarov, V.K., Titi, E.: Global attractors and determining modes for the 3D Navier–Stokes–Voight equations. Chin. Ann. Math. Ser. B 30(6), 697–714 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Kalantarov, V.K., Levant, B., Titi, E.: Gevrey regularity for the attractor of the 3D Navier–Stoke–Voight equations. J. Nonlinear Sci. 19(2), 133–152 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, W., Bertozzi, A., Kolokolnikov, T.: Diffuse interface surface tension models in an expanding flow. Commun. Math. Sci. 10(1), 387–418 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Lamorgese, A.G., Mauri, R.: Diffuse-interface modeling of phase segregation in liquid mixtures. Int. J. Multiph. Flow 3, 987–995 (2008)

    Article  Google Scholar 

  • Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • Lin, F.-H., Liu, C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math. 48, 501–537 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179, 211–228 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454, 2617–2654 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Maxwell, D.: Initial Data for Black Holes and Rough Spacetimes, PhD thesis, University of Washington (2004)

  • Medjo, T.T.: Pullback attractors for a non-autonomous homogeneous two-phase flow model. J. Differ. Equ. 253(6), 1779–1806 (2012)

    Article  MATH  Google Scholar 

  • Medjo, T.T.: Longtime behavior of a 3D LANS-\(\alpha \) system with phase transition (submitted)

  • Morro, A.: Phase-field models for fluid mixtures. Math. Comput. Model. 45, 1042–1052 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Miranville, A.; Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. Handbook of differential equations: evolutionary equations. Vol. IV, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2008)

  • Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola. Norm. Sup. Pisa 13, 115–162 (1959)

    MATH  MathSciNet  Google Scholar 

  • Onuki, A.: Phase transitions of fluids in shear flow. J. Phy. Cond. Matter 9, 6119–6157 (1997)

    Article  Google Scholar 

  • Ruiz, R., Nelson, D.R.: Turbulence in binary fluid mixtures. Phys. Rev. A 23, 3224–3246 (1981)

    Article  Google Scholar 

  • Shkoller, S.: Well-posedness and global attractors for liquid crystals on Riemannian manifolds. Comm. Partial Differ. Equ. 27, 1103–1137 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Siggia, E.D.: Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A 20, 595–605 (1979)

    Article  Google Scholar 

  • Shah, A.: Yuan, Li: Numerical solution of a phase field model for incompressible two-phase flows based on artificial compressibility. Comput. Fluids 42, 54–61 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Solonnikov, V.A., Ščadilov, V.E.: On a boundary value problem for a stationary system of Navier–Stokes equations. Trudy Mat. Inst. Steklov 125, 186–199 (1973)

    MATH  Google Scholar 

  • Starovoitov, V.N.: The dynamics of a two-component fluid in the presence of capillary forces. Math. Notes 62, 244–254 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Tan, Z., Lim, K.M., Khoo, B.C.: An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model. J. Comput. Phys. 225, 1137–1158 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci., vol. 68. Springer, New York (1988)

  • Wu, H.: Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 26, 379–396 (2010)

    Article  MATH  Google Scholar 

  • Xie, X.: Boundary layers associated with a coupled Navier–Stokes/Allem–Cahn system: the non-characteristic boundary case. J. Partial Differ. Equ. 25(1), 66–78 (2012)

    MATH  MathSciNet  Google Scholar 

  • Xu, X., Zhao, L., Liu, C.: Axisymmetric solutions to coupled Navier–Stokes/Allen–Cahn equations. SIAM J. Math. Anal. 41(6), 2246–2282 (2009-2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Yang, X., Feng, J.J., Liu, C., Shen, J.: Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method. J. Comput. Phys. 218, 417–428 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao, L., Wu, H., Huang, H.: Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids. Commun. Math. Sci. 7, 939–962 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhao, L., Guo, B., Huang, H.: Vanishing viscosity limit for a coupled Navier–Stokes/Allen–Cahn system. J. Math. Anal. Appl. 384(2), 232–245 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciprian G. Gal.

Additional information

Communicated by Paul Newton.

Appendix

Appendix

In this section, we include some supporting material on Grönwall-type inequalities, Sobolev inequalities, some definitions, and abstract results. The first lemma is a slight generalization of the usual Grönwall-type inequality (Temam 1988); its proof is quite elementary and thus omitted.

Lemma 8.1

Let \(\mathcal {E}:\mathbb {R}_{+}\rightarrow \mathbb {R}_{+}\) be an absolutely continuous function satisfying

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\mathcal {E}(t)+2\eta \mathcal {E}(t)\le h(t)\mathcal {E}(t)+l\left( t\right) +k, \end{aligned}$$

where \(\eta >0\), \(k\ge 0\), and \(\int \limits _{s}^{t}h\left( \tau \right) \hbox {d}\tau \le \eta (t-s)+m\) for all \(t\ge s\ge 0\) and some \(m\in \mathbb {R}\), and \(\int \limits _{t}^{t+1}l\left( \tau \right) \hbox {d}\tau \le \gamma <\infty \). Then, for all \(t\ge 0\),

$$\begin{aligned} \mathcal {E}(t)\le \mathcal {E}(0)e^{m}e^{-\eta t}+\frac{2\gamma e^{m+\eta }}{e^{\eta }-1}+\frac{ke^{m}}{\eta }. \end{aligned}$$

With \(s,p\in \mathbb {R}_{+}\), let \(W^{s,p}\) be the standard Sobolev space on an \(n\)-dimensional compact Riemannian manifold, with \(n\ge 2 \). The following result states the classical Gagliardo–Nirenberg–Sobolev inequality (cf. Bakry et al. 1995; Hebey 1999; Nirenberg 1959; Ceccon and Montenegro 2008, 2013).

Lemma 8.2

Let \(0\le k<m\), with \(k,m\in \mathbb {N}\) and numbers \(p,q,q\in \left[ 1,\infty \right] \), satisfy

$$\begin{aligned} k-\frac{n}{p}=\tau \left( m-\frac{n}{q}\right) -\left( 1-\tau \right) \frac{n}{r}. \end{aligned}$$

Then there exists a positive constant \(C\) independently of \(u\) such that

$$\begin{aligned} \left\| u\right\| _{W^{k,p}}\le C\left\| u\right\| _{W^{m,q}}^{\tau }\left\| u\right\| _{L^{r}}^{1-\tau }, \end{aligned}$$

with \(\tau \in \left[ \frac{k}{m},1\right] \), provided that \(m-k-\frac{n}{r}\notin \mathbb {N}_{0},\) and \(\tau =\frac{k}{m}\), provided that \(m-k-\frac{n}{r}\in \mathbb {N}_{0}.\)

We state here a standard result on the pointwise multiplication of functions in Sobolev spaces (see Maxwell 2004; cf. also Holst et al. 2010).

Lemma 8.3

Let \(s\), \(s_{1}\), and \(s_{2}\) be real numbers satisfying

$$\begin{aligned} s_{1}+s_{2}\ge 0,\qquad min(s_{1},s_{2})\ge s,\qquad \text {and}\qquad s_{1}+s_{2}-s>\frac{n}{2}, \end{aligned}$$

where the strictness of the last two inequalities can be interchanged if \(s\in \mathbb {N}_{0}\). Then the pointwise multiplication of functions extends uniquely to a continuous bilinear map

$$\begin{aligned} H^{s_{1}}\otimes H^{s_{2}}\rightarrow H^{s}. \end{aligned}$$

We have the following definition of exponential attractor (also known as inertial set).

Definition 8.4

Let \(\left( S\left( t\right) , \mathcal {K}\right) \) be a dynamical system on a given Banach space \(\mathcal {K}\). A set \(\mathcal {M}\subset \mathcal {K}\) is said to be an exponential attractor (also known as an inertial set) for the semigroup \(S\left( t\right) \) provided that the following statements hold:

(\(i\)):

The sets \(\mathcal {M}\) are positively invariant with respect to the semigroup \(S\left( t\right) , \) that is, \(S\left( t\right) \mathcal {M}\subseteq \mathcal {M}\), for all \(\,t\ge 0\);

(\(ii\)):

The fractal dimension of the sets \(\mathcal {M}\) is finite, that is, \(\dim _{F}\left( \mathcal {M},\mathcal {K}\right) \le C<\infty , \) where \(C>0\) can be computed explicitly;

(\(iii\)):

Each \(\mathcal {M}\) attracts exponentially any bounded subset of \(\mathcal {K},\) that is, there exist a positive constant \(\rho \) and a monotone nonnegative function \(Q\) such that for every bounded subset \(B\) of \(\mathcal {K}\) we have

$$\begin{aligned} dist_{\mathcal {K}}\left( S\left( t\right) B,\mathcal {M}\right) \le Q(\left\| B\right\| _{\mathcal {K}})e^{-\rho t}, \end{aligned}$$

where \(\displaystyle dist_{\mathcal {K}}\left( X,Y\right) :=\sup _{x\in X}\inf _{y\in Y}\left\| x-y\right\| _{\mathcal {K}}\) is the Hausdorff semidistance.

We report the following basic abstract results (see Gatti et al. 2010, Theorem 4.4; Gal and Grasselli 2010b, a; cf. also Miranville and Zelik 2008), which are needed to prove Theorem 5.8 when \(\theta >0\) and Theorem 5.18 in the case \(\theta =0\).

Theorem 8.5

Let \({\mathcal {X}}_{1}\) and \({\mathcal {X}}_{2}\) be two Banach spaces such that \({\mathcal {X}_{2}}\) is compactly embedded in \({\mathcal {X}}_{1}.\) Let \(X_{0}\) be a bounded subset of \(\mathcal {X}_{2}\), and consider a nonlinear map \(\Sigma :X_{0}\rightarrow X_{0}\) satisfying the smoothing property

$$\begin{aligned} \left\| \Sigma \left( x_{1}\right) -\Sigma \left( x_{2}\right) \right\| _{{\mathcal {X}}_{2}}\le d\left\| x_{1}-x_{2}\right\| _{{\mathcal {X}_{1}}} \end{aligned}$$
(8.1)

for all \(x_{1},x_{2}\in X_{0},\) where \(d>0\) depends on \(X_{0}.\) Then the discrete dynamical system \((X_{0},\Sigma ^{n})\) possesses a discrete exponential attractor \(\mathcal {E}_{M}^{*}\subset {\mathcal {X}_{2}},\) that is, a compact set in \({\mathcal {X}_{1}}\) with finite fractal dimension such that

$$\begin{aligned} \Sigma \left( \mathcal {E}_{M}^{*}\right) \subset \mathcal {E}_{M}^{*}, \end{aligned}$$
(8.2)
$$\begin{aligned} dist_{{\mathcal {X}_{1}}}\left( \Sigma ^{n}\left( X_{0}\right) , \mathcal {E}_{M}^{*}\right) \le d_{X}e^{-\rho _{*}n},\quad n\in {\mathbb {N}}, \end{aligned}$$
(8.3)

where \(d_{X}\) and \(\rho _{*}\) are positive constants independent of \(n,\) with the former depending on \(X_{0}.\)

Theorem 8.6

Let \(\mathcal {K}\) and \(\mathcal {K}_{c}\) be two Banach spaces such that \(\mathcal {K}_{c}\) is compactly embedded in \(\mathcal {K}\), and let \(\left( S\left( t\right) , \mathcal {K}\right) \) be a dynamical system. Assume that the following hypotheses hold:

  1. (H1)

    There exists a bounded subset \(\mathbb {B}\subset \mathcal {K}\) that is positively invariant for \(S(t)\) and attracts any bounded set of \(\mathcal {K}\) exponentially fast.

  2. (H2)

    There exists a positive constant \(C\) independently of time such that

    $$\begin{aligned} \left\| S\left( t\right) \varphi _{1}-S\left( t\right) \varphi _{1}\right\| _{\mathcal {K}}\le \rho \left( t\right) \left\| \varphi _{1}-\varphi _{2}\right\| _{\mathcal {K}}, \end{aligned}$$

    for every \(t\ge 0\) and every \(\varphi _{1},\varphi _{2}\in \mathbb {B}\), where \(\rho :\mathbb {R}_{+}\rightarrow \mathbb {R}_{+}\) is some continuous function with \(\rho \left( 0\right) >0.\)

  3. (H3)

    There exist a positive constant \(C,\) \(\kappa \in \left( 0,1\right) \), and a time \(t^{*}>0\) such that

    $$\begin{aligned} \left\| S(t)\varphi _{0}-S(\tilde{t})\varphi _{0}\right\| _{\mathcal {K}}\le C|t-\tilde{t}|^{\kappa }, \end{aligned}$$

    for all \(t,\tilde{t}\in \left[ t^{*},2t^{*}\right] \) and any \(\varphi _{0}\in \mathbb {B}.\)

  4. (H4)

    For every \(\varphi _{01},\varphi _{02}\in \mathbb {B}\), \(S(t)\) can be decomposed as follows:

    $$\begin{aligned} S(t)\varphi _{01}-S(t)\varphi _{02}=D\left( t\right) \left( \varphi _{01},\varphi _{02}\right) +N\left( t\right) \left( \varphi _{01},\varphi _{02}\right) , \end{aligned}$$

    where for all \(t\ge 0\) we have

    $$\begin{aligned} \left\{ \begin{array}{l} \left\| D\left( t\right) \left( \varphi _{01},\varphi _{02}\right) \right\| _{\mathcal {K}}\le Ke^{-\varkappa t}\left\| \varphi _{01}-\varphi _{02}\right\| _{\mathcal {K}}, \\ \left\| N\left( t\right) \left( \varphi _{01},\varphi _{02}\right) \right\| _{\mathcal {K}_{c}}\le \rho \left( t\right) \left\| \varphi _{01}-\varphi _{02}\right\| _{\mathcal {K}}, \end{array} \right. \end{aligned}$$

    for some positive constants \(\varkappa , K\) independent of time and some positive continuous function \(\rho :\mathbb {R}_{+}\rightarrow \mathbb {R}_{+}\), \(\rho \left( 0\right) >0.\) Then, if (H1)–(H4) are satisfied, there exists an exponential attractors \(\mathcal {M}\) for \(\left( S\left( t\right) , \mathcal {K}\right) \) in the sense of Definition 8.4 (i)–(iii).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gal, C.G., Medjo, T.T. On a Regularized Family of Models for Homogeneous Incompressible Two-Phase Flows. J Nonlinear Sci 24, 1033–1103 (2014). https://doi.org/10.1007/s00332-014-9211-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9211-z

Keywords

Mathematics Subject Classification

Navigation