Skip to main content
Log in

Global attractors and determining modes for the 3D Navier-Stokes-Voight equations

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The authors investigate the long-term dynamics of the three-dimensional Navier-Stokes-Voight model of viscoelastic incompressible fluid. Specifically, upper bounds for the number of determining modes are derived for the 3D Navier-Stokes-Voight equations and for the dimension of a global attractor of a semigroup generated by these equations. Viewed from the numerical analysis point of view the authors consider the Navier-Stokes-Voight model as a non-viscous (inviscid) regularization of the three-dimensional Navier-Stokes equations. Furthermore, it is also shown that the weak solutions of the Navier-Stokes-Voight equations converge, in the appropriate norm, to the weak solutions of the inviscid simplified Bardina model, as the viscosity coefficient ν → 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R. A., Sobolev Spaces, Academic Press, New York, 1975.

    MATH  Google Scholar 

  2. Babin, A. V. and Vishik, M. I., Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.

    MATH  Google Scholar 

  3. Bardina, J., Ferziger, J. H. and Reynolds, W. C., Improved subgrid scale models for large eddy simulation, 13th AIAA Fluid and Plasma Dynamics Conference, 1980, 80–1357.

  4. Berselli, L. C., Iliescu, T. and Layton, W. J., Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation, Springer-Verlag, New York, 2006.

    Google Scholar 

  5. Cao, Y. P., Lunasin, E. M. and Titi, E. S., Global well-posedness of the three dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4(4), 2006, 823–848.

    MATH  MathSciNet  Google Scholar 

  6. Çelebi, A. O., Kalantarov, V. K. and Polat, M., Attractors for the generalized Benjamin-Bona-Mahony equation, J. Diff. Eqs., 157(2), 1999, 439–451.

    Article  MATH  Google Scholar 

  7. Chueshov, I. D., Theory of functionals that uniquely determine the asymptotic dynamics of infinitedimensional dissipative systems, Russ. Math. Sur., 53(4), 1998, 731–776.

    Article  MATH  MathSciNet  Google Scholar 

  8. Cockburn, B., Jones D. A. and Titi, E. S., Determining degrees of freedom for nonlinear dissipative equations, CR Acad. Sci. Paris, 321(5), 1995, 563–568.

    MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Jones D. A. and Titi, E. S., Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comp., 66, 1997, 1073–1087.

    Article  MATH  MathSciNet  Google Scholar 

  10. Constantin, P., Doering C. R. and Titi, E. S., Rigorous estimates of small scales in turbulent flows, J. Math. Phys., 37, 1996, 6152–6156.

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantin, P. and Foias, C., Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 1988.

    Google Scholar 

  12. Constantin, P., Foias, C., Manley, O. P., et al, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech., 150, 1985, 427–440.

    Article  MATH  MathSciNet  Google Scholar 

  13. Constantin, P., Foias, C., Nicolaenko, B., et al, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Appl. Math. Sci., 70, Springer-Verlag, New York, 1989.

    Google Scholar 

  14. Constantin, P., Foias, C. and Temam, R., Attractors representing turbulent flows, Mem. Amer. Math. Soc., 53(314), 1985, 1–67.

    MathSciNet  Google Scholar 

  15. Foias, C., Manley, O., Rosa, R., et al, Navier-Stokes Equations and Turbulence, Cambridge University Press, Cambridge, 2001.

    MATH  Google Scholar 

  16. Foias, C., Manley, O. P., Temam, R., et al, Asymptotic analysis of the Navier-Stokes equations, Phys. D, 9(1–2), 1983, 157–188.

    Article  MATH  MathSciNet  Google Scholar 

  17. Foias, C. and Prodi, G., Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, 39, 1967, 1–34.

    MATH  MathSciNet  Google Scholar 

  18. Foias, C. and Titi, E. S., Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, 4, 1991, 135–153.

    Article  MATH  MathSciNet  Google Scholar 

  19. Hale, J. K., Asymptotic Behavior of Dissipative Systems, Math. Sur. Monographs, Vol. 25, A. M. S., Providence, RI, 1988.

    Google Scholar 

  20. Holst, M. J. and Titi, E. S., Determining projections and functionals for weak solutions of the Navier-Stokes equations, Recent Developments in Optimization Theory and Nonlinear Analysis, Y. Censor and S. Reich (eds.), Contemp. Math., Vol. 204, A. M. S., Providence, RI, 1997, 125–138.

    Google Scholar 

  21. Ilyin, A. A., Attractors for Navier-Stokes equations in domains with finite measure, Nonlinear Anal., 27, 1996, 605–616.

    Article  MATH  MathSciNet  Google Scholar 

  22. Ilyin, A. A. and Titi, E. S., Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier-Stokes equations, J. Nonlinear Sci., 16(3), 2006, 233–253.

    Article  MATH  MathSciNet  Google Scholar 

  23. Jones, D. A. and Titi, E. S., Determining finite volume elements for the 2D Navier-Stokes equations, Phys. D, 60, 1992, 165–174.

    Article  MATH  MathSciNet  Google Scholar 

  24. Jones, D. A. and Titi, E. S., Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J., 42, 1993, 875–887.

    Article  MATH  MathSciNet  Google Scholar 

  25. Kalantarov, V. K., Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. LOMI, 152, 1986, 50–54.

    MATH  Google Scholar 

  26. Kalantarov, V. K., Global behavior of solutions of nonlinear equations of mathematical physics of classical and non-classical type, Postdoctoral Thesis, St. Petersburg, 1988.

  27. Kalantarov, V. K., Levant, B. and Titi, E. S., Gevrey regularity of the global attractor of the 3D Navier-Stokes-Voight equations, J. Nonlinear Sci., 19, 2009, 133–152.

    Article  MATH  MathSciNet  Google Scholar 

  28. Karazeeva, N. A., Kotsiolis, A. A. and Oskolkov, A. P., Dynamical systems generated by initial-boundary value problems for equations of motion of linear viscoelastic fluids, Proc. Steklov Inst. Math., 3, 1991, 73–108.

    Google Scholar 

  29. Khouider, B. and Titi, E. S., An inviscid regularization for the surface quasi-geostrophic equation, Comm. Pure Appl. Math., 61, 2008, 1331–1346.

    Article  MATH  MathSciNet  Google Scholar 

  30. Henshaw, W. D., Kreiss, H. O. and Yström, J., Numerical experiments on the interaction between the large and small-scale motions of the Navier-Stokes equations, Multiscale Model. Simul., 1, 2003, 119–149.

    Article  MATH  MathSciNet  Google Scholar 

  31. Ladyzhenskaya, O. A., On the dynamical system generated by the Navier-Stokes equations, Zap. Nauchn. Sem. LOMI, 27, 1972, 91–114.

    MATH  Google Scholar 

  32. Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Science Publishers, New York, 1963.

    MATH  Google Scholar 

  33. Ladyzhenskaya, O. A., Attractors for Semigroups and Evolution Equations, Lezioni Lincee, Cambridge University Press, Cambridge, 1991.

    Google Scholar 

  34. Ladyzhenskaya, O. A., Solonnikov, V. A. and Uraltseva, N. N., Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967.

    MATH  Google Scholar 

  35. Larios, A. and Titi, E. S., On the high-order global regularity of the three-dimensional inviscid α-regularization of various hydrodynmaic models, preprint.

  36. Layton, R. and Lewandowski, R., On a well-posed turbulence model, Discrete Continuous Dyn. Sys. B, 6, 2006, 111–128.

    MATH  MathSciNet  Google Scholar 

  37. Levant, B., Ramos, F. and Titi, E. S., On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model, Commun. Math. Sci., 7, 2009, in press.

  38. Moise, I., Rosa, R. and Wang, X. M., Attractors for non-compact semigroups via energy equations, Non-linearity, 11(5), 1998, 1369–1393.

    MATH  MathSciNet  Google Scholar 

  39. Olson, E. and Titi, E. S., Determining modes for continuous data assimilation in 2D turbulence, J. Stat. Phys., 113(5–6), 2003, 799–840.

    Article  MATH  MathSciNet  Google Scholar 

  40. Olson, E. and Titi, E. S., Determining modes and Grashof number in 2D turbulence — A numerical case study, 2007, preprint.

  41. Oskolkov, A. P., The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Zap. Nauchn. Sem. LOMI, 38, 1973, 98–136.

    MATH  MathSciNet  Google Scholar 

  42. Oskolkov, A. P., A certain nonstationary quasilinear system with a small parameter, that regularizes the system of Navier-Stokes equations, Problems of Mathematical Analysis, No. 4: Integral and Differential Operators. Differential Equations, St. Petersburg University, St. Petersburg, 143, 1973, 78–87.

    Google Scholar 

  43. Oskolkov, A. P., On the theory of Voight fluids, Zap. Nauchn. Sem. LOMI, 96, 1980, 233–236.

    MATH  MathSciNet  Google Scholar 

  44. Ramos, F. and Titi, E. S., Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, preprint.

  45. Robinson, J., Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  46. Stanislavova, M., Stefanov, A. and Wang, B. X., Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on ℝ3, J. Diff. Eqs., 219(2), 2005, 451–483.

    Article  MATH  MathSciNet  Google Scholar 

  47. Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  48. Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, Third Revised Edition, North-Holland, Amsterdam, 2001.

    MATH  Google Scholar 

  49. Wang, B. X. and Yang, W. L., Finite-dimensional behaviour for the Benjamin-Bona-Mahony equation, J. Phys. A, 30(13), 1997, 4877–4885.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varga K. Kalantarov.

Additional information

Dedicated to Professor Andrew Majda on the Occasion of his 60th Birthday with Friendship and Admiration

Project supported by the Scientific and Research Council of Turkey (No. 106T337), the ISF Grant (No. 120/6), the BSF Grant (No. 2004271), and the National Science Foundation (Nos. DMS-0504619, DMS-0708832).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalantarov, V.K., Titi, E.S. Global attractors and determining modes for the 3D Navier-Stokes-Voight equations. Chin. Ann. Math. Ser. B 30, 697–714 (2009). https://doi.org/10.1007/s11401-009-0205-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-009-0205-3

Keywords

2000 MR Subject Classification

Navigation