Skip to main content
Log in

Existence of Homogeneous Euler Flows of Degree \(-\alpha \notin [-2,0]\)

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider (\(-\alpha \))-homogeneous solutions to the stationary incompressible Euler equations in \({\mathbb {R}}^{3}\backslash \{0\}\) for \(\alpha \geqq 0\) and in \({\mathbb {R}}^{3}\) for \(\alpha <0\). Shvydkoy (2018) demonstrated the nonexistence of (\(-1\))-homogeneous solutions \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) and (\(-\alpha \))-homogeneous solutions in the range \(0\leqq \alpha \leqq 2\) for the Beltrami and axisymmetric flow; namely, that no (\(-\alpha \))-homogeneous solutions \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) for \(1\leqq \alpha \leqq 2\) and \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(0\leqq \alpha < 1\) exist among these particular classes of flows other than irrotational solutions for integers \(\alpha \). The nonexistence result of the Beltrami (\(-\alpha \))-homogeneous solutions \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) holds for all \(\alpha <1\). We show the nonexistence of axisymmetric (\(-\alpha \))-homogeneous solutions without swirls \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(-2\leqq \alpha <0\). The main result of this study is the existence of axisymmetric (\(-\alpha \))-homogeneous solutions in the complementary range \(\alpha \in {\mathbb {R}}\backslash [0,2]\). More specifically, we show the existence of axisymmetric Beltrami (\(-\alpha \))-homogeneous solutions \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >2\) and \((u,p)\in C({\mathbb {R}}^{3})\) for \(\alpha <0\) and axisymmetric (\(-\alpha \))-homogeneous solutions with a nonconstant Bernoulli function \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >2\) and \((u,p)\in C({\mathbb {R}}^{3})\) for \(\alpha <-2\), including axisymmetric (\(-\alpha \))-homogeneous solutions without swirls \((u,p)\in C^{2}({\mathbb {R}}^{3}\backslash \{0\})\) for \(\alpha >2\) and \((u,p)\in C^{1}({\mathbb {R}}^{3}\backslash \{0\})\cap C({\mathbb {R}}^{3})\) for \(\alpha <-2\). This is the first existence result on (\(-\alpha \))-homogeneous solutions with no explicit forms. The level sets of the axisymmetric stream function of the irrotational (\(-\alpha \))-homogeneous solutions in the cross-section are the Jordan curves for \(\alpha =3\). For \(2<\alpha <3\), we show the existence of axisymmetric (\(-\alpha \))-homogeneous solutions whose stream function level sets are the Jordan curves. They provide new examples of the Beltrami/Euler flows in \({\mathbb {R}}^{3}\backslash \{0\}\) whose level sets of the proportionality factor/Bernoulli surfaces are nested surfaces created by the rotation of the sign \(``\infty ''\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Albritton, D., Brué, E., Colombo, M, De Lellis, C., Giri, V., Janisch, M., Kwon, H.: Instability and nonuniqueness for the 2d Euler equations in vorticity form, after M. Vishik. arXiv:2112.04943

  2. Albritton, D., Brué, E., Colombo, M.: Non-uniqueness of Leray solutions of the forced Navier–Stokes equations. Ann. Math. 2(196), 415–455, 2022

    MathSciNet  Google Scholar 

  3. Abe, K.: Existence of vortex rings in Beltrami flows. Commun. Math. Phys. 391, 873–899, 2022

    Article  ADS  MathSciNet  Google Scholar 

  4. Arnold, V.I., Khesin, B.A.: Topological methods in hydrodynamics. 125, 455, 2021

  5. Alexander, R.C.: Family of similarity flows with vortex sheets. Phys. Fluids 14, 231–239, 1971

    Article  ADS  Google Scholar 

  6. Aly, J.J.: Asymptotic formation of a current sheet in an indefinitely sheared force-free field: an analytical example. Astron. Astrophys. 288, 1012–1020, 1994

    ADS  Google Scholar 

  7. Arfken, G. B., Weber, H. J.: Mathematical methods for physicists, 2001

  8. Baldi, P.: Nearly toroidal, periodic and quasi-periodic motions of fluid particles driven by the Gavrilov solutions of the Euler equations. arXiv:2302.02982v1

  9. Barenblatt, G. I.: Scaling, self-similarity, and intermediate asymptotics. 14, xxii+386, 1996

  10. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1999)

    Google Scholar 

  11. Bedrossian, J., Germain, P., Masmoudi, N.: Stability of the Couette flow at high Reynolds numbers in two dimensions and three dimensions. Bull. Amer. Math. Soc. (N.S.) 56, 373–414, 2019

  12. Bruno, O.P., Laurence, P.: Existence of three-dimensional toroidal MHD equilibria with nonconstant pressure. Comm. Pure Appl. Math. 49, 717–764, 1996

    Article  MathSciNet  Google Scholar 

  13. Brezis, H., Li, Y.: Some nonlinear elliptic equations have only constant solutions. J. Part. Differ. Equ. 19, 208–217, 2006

    MathSciNet  Google Scholar 

  14. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Études Sci. 122, 195–300, 2015

    Article  MathSciNet  Google Scholar 

  15. Bressan, A., Murray, R.: On self-similar solutions to the incompressible Euler equations. J. Differ. Equ. 269, 5142–5203, 2020

    Article  ADS  MathSciNet  Google Scholar 

  16. Brezis, H., Peletier, L.A.: Elliptic equations with critical exponent on spherical caps of \(S^3\). J. Anal. Math. 98, 279–316, 2006

    Article  MathSciNet  Google Scholar 

  17. Bronzi, A., Shvydkoy, R.: On the energy behavior of locally self-similar blowup for the Euler equation. Indiana Univ. Math. J. 64, 1291–1302, 2015

    Article  MathSciNet  Google Scholar 

  18. Bressan, A., Shen, W.: A posteriori error estimates for self-similar solutions to the Euler equations. Discrete Contin. Dyn. Syst. 41, 113–130, 2021

    Article  MathSciNet  Google Scholar 

  19. Bradshaw, Z., Tsai, T.-P.: Forward discretely self-similar solutions of the Navier–Stokes equations II. Ann. Henri Poincaré 18, 1095–1119, 2017

    Article  ADS  MathSciNet  Google Scholar 

  20. Bedrossian, J., Vicol, V.: The mathematical analysis of the incompressible Euler and Navier–Stokes equations—an introduction. 225:xiii+218 [2022], 2022

  21. Bandle, C., Wei, J.: Multiple clustered layer solutions for semilinear elliptic problems on \(S^n\). Commun. Part. Differ. Equ. 33, 613–635, 2008

    Article  Google Scholar 

  22. Chae, D., Constantin, P.: Remarks on a Liouville-type theorem for Beltrami flows. Int. Math. Res. Not. IMRN, pp. 10012–10016, 2015

  23. Constantin, P., Drivas, T. D., Ginsberg, D.: Flexibility and rigidity of free boundary MHD equilibria. arXiv:2108.05977v2

  24. Constantin, P., Drivas, T.D., Ginsberg, D.: Flexibility and rigidity in steady fluid motion. Commun. Math. Phys. 385, 521–563, 2021

    Article  ADS  MathSciNet  Google Scholar 

  25. Constantin, P., Drivas, T.D., Ginsberg, D.: On quasisymmetric plasma equilibria sustained by small force. J. Plasma Phys. 87, 905870111, 2021

    Article  Google Scholar 

  26. Collot, C., Ghoul, T.-E., Ibrahim, S., Masmoudi, N.: On singularity formation for the two-dimensional unsteady Prandtl system around the axis. J. Eur. Math. Soc. 24, 3703–3800, 2022

    Article  MathSciNet  Google Scholar 

  27. Collot, C., Ghoul, T.-E., Masmoudi, N.: Singularities and unsteady separation for the inviscid two-dimensional Prandtl system. Arch. Ration. Mech. Anal. 240, 1349–1430, 2021

    Article  MathSciNet  Google Scholar 

  28. Collot, C., Ghoul, T.-E., Masmoudi, N.: Singularity formation for Burgers’ equation with transverse viscosity. Ann. Sci. Éc. Norm. Supér. 4(55), 1047–1133, 2022

    Article  MathSciNet  Google Scholar 

  29. Chae, D.: Nonexistence of self-similar singularities for the 3D incompressible Euler equations. Commun. Math. Phys. 273, 203–215, 2007

    Article  ADS  MathSciNet  Google Scholar 

  30. Chae, D.: Euler’s equations and the maximum principle. Math. Ann. 361, 51–66, 2015

    Article  MathSciNet  Google Scholar 

  31. Chae, D.: Remarks on the asymptotically discretely self-similar solutions of the Navier–Stokes and the Euler equations. Nonlinear Anal. 125, 251–259, 2015

    Article  MathSciNet  Google Scholar 

  32. Chae, D.: Unique continuation type theorem for the self-similar Euler equations. Adv. Math. 283, 143–154, 2015

    Article  MathSciNet  Google Scholar 

  33. Cannone, M., Karch, G.: Smooth or singular solutions to the Navier–Stokes system? J. Differ. Equ. 197, 247–274, 2004

    Article  ADS  MathSciNet  Google Scholar 

  34. Chae, D., Kang, K., Lee, J.: Notes on the asymptotically self-similar singularities in the Euler and the Navier–Stokes equations. Discret. Contin. Dyn. Syst. 25, 1181–1193, 2009

    Article  MathSciNet  Google Scholar 

  35. Cieślak, T., Kokocki, P., Ożański, W. S.: Existence of nonsymmetric logarithmic spiral vortex sheet solutions to the 2D Euler equations. arXiv:2207.06056

  36. Cieślak, T., Kokocki, P., Ożański, W. S.: Well-posedness of logarithmic spiral vortex sheets. arXiv:2110.07543

  37. Constantin, P., La, J., Vicol, V.: Remarks on a paper by Gavrilov: Grad–Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications. Geom. Funct. Anal. 29, 1773–1793, 2019

    Article  MathSciNet  Google Scholar 

  38. Constantin, P., Pasqualotto, F.: Magnetic relaxation of a voigt–mhd system. arXiv:2208.11109v1

  39. Chae, D., Shvydkoy, R.: On formation of a locally self-similar collapse in the incompressible Euler equations. Arch. Ration. Mech. Anal. 209, 999–1017, 2013

    Article  MathSciNet  Google Scholar 

  40. Cheskidov, A., Shvydkoy, R.: Euler equations and turbulence: analytical approach to intermittency. SIAM J. Math. Anal. 46, 353–374, 2014

    Article  MathSciNet  Google Scholar 

  41. Choffrut, A., Szekelyhidi, L.: Weak solutions to the stationary incompressible Euler equations. SIAM J. Math. Anal. 46, 4060–4074, 2014

    Article  MathSciNet  Google Scholar 

  42. Chae, D., Tsai, T.P.: On discretely self-similar solutions of the Euler equations. Math. Res. Lett. 21, 437–447, 2014

    Article  MathSciNet  Google Scholar 

  43. Choffrut, A., Šverák, V.: Local structure of the set of steady-state solutions to the 2D incompressible Euler equations. Geom. Funct. Anal. 22, 136–201, 2012

    Article  MathSciNet  Google Scholar 

  44. Chae, D., Wolf, J.: On the Liouville theorem for weak Beltrami flows. Nonlinearity 29, 3417–3425, 2016

    Article  ADS  MathSciNet  Google Scholar 

  45. Chae, D., Wolf, J.: Energy concentrations and Type I blow-up for the 3D Euler equations. Commun. Math. Phys. 376, 1627–1669, 2020

    Article  ADS  MathSciNet  Google Scholar 

  46. Drivas, T. D., Elgindi, T. M.: Singularity formation in the incompressible euler equation in finite and infinite time. arXiv:2203.17221v1

  47. De Lellis, C., Székelyhidi, L., Jr.: Dissipative continuous Euler flows. Invent. Math. 193, 377–407, 2013

    Article  ADS  MathSciNet  Google Scholar 

  48. Deng, Y., Masmoudi, N.: Long time instability of the Couette flow in low Gevrey spaces. arXiv:1803.01246

  49. Domínguez-Vázquez, M., Enciso, A., Peralta-Salas, D.: Piecewise smooth stationary Euler flows with compact support via overdetermined boundary problems. Arch. Ration. Mech. Anal. 239, 1327–1347, 2021

    Article  MathSciNet  Google Scholar 

  50. Eggers, J., Fontelos, M.A.: The role of self-similarity in singularities of partial differential equations. Nonlinearity 22, 1–44, 2009

    Article  MathSciNet  Google Scholar 

  51. Elling, V., Gnann, M.V.: Variety of unsymmetric multibranched logarithmic vortex spirals. Eur. J. Appl. Math. 30, 23–38, 2019

    Article  MathSciNet  Google Scholar 

  52. Elgindi, T.M., Ghoul, T.-E., Masmoudi, N.: On the stability of self-similar blow-up for \(C^{1,\alpha }\) solutions to the incompressible Euler equations on \(\mathbb{R} ^3\). Camb. J. Math. 9, 1035–1075, 2021

    Article  MathSciNet  Google Scholar 

  53. Elgindi, T.M., Jeong, I.-J.: Symmetries and critical phenomena in fluids. Commun. Pure Appl. Math. 73, 257–316, 2020

    Article  MathSciNet  Google Scholar 

  54. Elgindi, T.M.: Finite-time singularity formation for \(C^{1,\alpha }\) solutions to the incompressible Euler equations on \(\mathbb{R} ^3\). Ann. Math. 2(194), 647–727, 2021

    MathSciNet  Google Scholar 

  55. Elling, V.: Self-similar 2d Euler solutions with mixed-sign vorticity. Commun. Math. Phys. 348, 27–68, 2016

    Article  ADS  MathSciNet  Google Scholar 

  56. Enciso, A., Luque, A., Peralta-Salas, D.: MHD equilibria with nonconstant pressure in nondegenerate toroidal domains. arXiv:2104.08149v1.

  57. Elgindi, T. M., Murray, R. W., Said, A. R.: On the long-time behavior of scale-invariant solutions to the 2d Euler equation and applications. arXiv:2211.08418v1.

  58. Enciso, A., Peralta-Salas, D.: Knots and links in steady solutions of the Euler equation. Ann. Math. 2(175), 345–367, 2012

    Article  MathSciNet  Google Scholar 

  59. Enciso, A., Peralta-Salas, D.: Existence of knotted vortex tubes in steady Euler flows. Acta Math. 214, 61–134, 2015

    Article  MathSciNet  Google Scholar 

  60. Enciso, A., Peralta-Salas, D.: Beltrami fields with a nonconstant proportionality factor are rare. Arch. Ration. Mech. Anal. 220, 243–260, 2016

    Article  MathSciNet  Google Scholar 

  61. Evans, L. C.: Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.

  62. Fraenkel, L.E.: An introduction to maximum principles and symmetry in elliptic problems, vol. 128. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  63. Gavrilov, A.V.: A steady Euler flow with compact support. Geom. Funct. Anal. 29, 190–197, 2019

    Article  MathSciNet  Google Scholar 

  64. García, C., Gómez-Serrano, J.: Self-similar spirals for the generalized surface quasi-geostrophic equations. arXiv:2207.12363

  65. Guo, Y., Huang, C., Pausader, B., Widmayer, K.: On the stabilizing effect of rotation in the 3d Euler equations. Comm. Pure Appl. Math., to appear. arXiv:2010.10460

  66. Glatt-Holtz, N., Šverák, V., Vicol, V.: On inviscid limits for the stochastic Navier–Stokes equations and related models. Arch. Ration. Mech. Anal. 217, 619–649, 2015

    Article  MathSciNet  Google Scholar 

  67. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243, 1979

    Article  ADS  MathSciNet  Google Scholar 

  68. Gourgouliatos, K.N.: Self-similar magnetic arcades. Mon. Not. R. Astron. Soc. 385, 875–882, 2008

    Article  ADS  Google Scholar 

  69. Guo, Y., Pausader, B., Widmayer, K.: Global axisymmetric Euler flows with rotation. Invent. math. 231, 169–262, 2023

    Article  ADS  MathSciNet  Google Scholar 

  70. Grad, H., Rubin, H.: Hydromagnetic equilibria and force-free fields. In: Proceedings of the Second United Nations Conference on the Peaceful Uses of Atomic Energy 31, 190–197, 1958

  71. Grad, H.: Toroidal containment of a plasma. Phys Fluids 10, 137–154, 1967

    Article  ADS  Google Scholar 

  72. Grad, H.: Theory and applications of the nonexistence of simple toroidal plasma equilibrium. Int. J. Fus. Energy 3, 33–46, 1985

    Google Scholar 

  73. Guillod, J., Šverák, V.: Numerical investigations of non-uniqueness for the Navier-Stokes initial value problem in borderline spaces. arXiv:1704.00560.

  74. Gómez-Serrano, J., Park, J., Shi, J.: Existence of non-trivial non-concentrated compactly supported stationary solutions of the 2D Euler equation with finite energy. arXiv:2112.03821v1.

  75. Hamel, F., Nadirashvili, N.: Shear flows of an ideal fluid and elliptic equations in unbounded domains. Commun. Pure Appl. Math. 70, 590–608, 2017

    Article  MathSciNet  Google Scholar 

  76. Hamel, F., Nadirashvili, N.: A Liouville theorem for the Euler equations in the plane. Arch. Ration. Mech. Anal. 233, 599–642, 2019

    Article  MathSciNet  Google Scholar 

  77. Hamel, F., Nadirashvili, N.: Circular flows for the Euler equations in two-dimensional annular domains, and related free boundary problems. J. Eur. Math. Soc. (JEMS) 25, 323–368, 2023

    Article  MathSciNet  Google Scholar 

  78. Ionescu, A. D., Jia, H.: Nonlinear inviscid damping near monotonic shear flows. arXiv:2001.03087.

  79. Ionescu, A.D., Jia, H.: Inviscid damping near the Couette flow in a channel. Commun. Math. Phys. 374, 2015–2096, 2020

    Article  ADS  MathSciNet  Google Scholar 

  80. Ionescu, A.D., Jia, H.: Axi-symmetrization near point vortex solutions for the 2D Euler equation. Commun. Pure Appl. Math. 75, 818–891, 2022

    Article  MathSciNet  Google Scholar 

  81. Isett, P.: Hölder continuous Euler flows with compact support in time. PhD thesis, Princeton University, 2013.

  82. Jeong, I.-J.: Dynamics of the incompressible Euler equations at critical regularity. PhD thesis, Princeton University, 2017

  83. Jeong, I.-J., Said, A. R.: Logarithmic spirals in 2d perfect fluids. arXiv:2302.09447v1

  84. Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions. Invent. Math. 196(1), 233–265, 2014

    Article  ADS  MathSciNet  Google Scholar 

  85. Jia, H., Šverák, V.: Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal. 268, 3734–3766, 2015

    Article  MathSciNet  Google Scholar 

  86. Jia, H., Šverák, V., Tsai, T.-P.: Self-similar solutions to the nonstationary Navier-Stokes equations. In Handbook of mathematical analysis in mechanics of viscous fluids, pp. 461–507. Springer, Cham, 2018.

  87. Kang, K., Miura, H., Tsai, T.-P.: Asymptotics of small exterior Navier–Stokes flows with non-decaying boundary data. Commun. Part. Differ. Equ. 37, 1717–1753, 2012

    Article  MathSciNet  Google Scholar 

  88. Koch, H., Nadirashvili, N.: Partial analyticity and nodal sets for nonlinear elliptic systems. arXiv:1506.06224

  89. Korobkov, M., Tsai, T.-P.: Forward self-similar solutions of the Navier–Stokes equations in the half space. Anal. PDE 9, 1811–1827, 2016

    Article  MathSciNet  Google Scholar 

  90. Kwon, H., Tsai, T.-P.: On bifurcation of self-similar solutions of the stationary Navier–Stokes equations. Commun. Math. Sci. 19, 1703–1733, 2021

    Article  MathSciNet  Google Scholar 

  91. Korolev, A., Šverák, V.: On the large-distance asymptotics of steady state solutions of the Navier-Stokes equations in 3D exterior domains. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 28:303–313, 2011.

  92. Landau, L.D.: A new exact solution of the Navier-Stokes equations. Dokl. Akad. Nauk SSSR, 43(299), 1944.

  93. Lynden-Bell, D., Boily, C.: Self-similar solutions up to flashpoint in highly wound magnetostatics. Mon. Not. R. Astron. Soc. 267, 146–152, 1994

    Article  ADS  Google Scholar 

  94. Lynden-Bell, D., Moffatt, H.K.: Flashpoint. Mon. Not. R. Astron. Soc. 452, 902–909, 2015

    Article  ADS  Google Scholar 

  95. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248, 1934

    Article  MathSciNet  Google Scholar 

  96. Lerche, I.: Some notes on self-similar axisymmetric force-free magnetic fields and rotating magnetospheres. Res. Astron. Astrophys. 1, 007–012, 2014

    Google Scholar 

  97. Landau, L. D., Lifshitz, E. M.: Fluid mechanics. Translated from the Russian by J. B. Sykes and W. H. Reid. Course of Theoretical Physics, Vol. 6. Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass., 1959.

  98. Low, B.C., Lou, Y.Q.: Modeling solar force-free magnetic fields. Astrophys. J. 352, 343–352, 1990

    Article  ADS  Google Scholar 

  99. Li, L., Li, Y., Yan, X.: Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. II. Classification of axisymmetric no-swirl solutions. J. Differ. Equ. 264, 6082–6108, 2018.

  100. Li, Li, Li, Y., Yan, X.: Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. I. One singularity. Arch. Ration. Mech. Anal. 227, 1091–1163, 2018

  101. Li, L., Li, Y., Yan, X.: Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. III. Two singularities. Discrete Contin. Dyn. Syst. 39, 7163–7211, 2019.

  102. Luna, M., Priest, E., Moreno-Insertis, F.: Self-similar approach for rotating magnetohydrodynamic solar and astrophysical structures. Astrophys. J. 863, 14, 2018

  103. Luo, X., Shvydkoy, R.: 2D homogeneous solutions to the Euler equation. Comm. Part. Differ. Equ. 40, 1666–1687, 2015

    Article  MathSciNet  Google Scholar 

  104. Leslie, T.M., Shvydkoy, R.: The energy measure for the Euler and Navier–Stokes equations. Arch. Ration. Mech. Anal. 230, 459–492, 2018

    Article  MathSciNet  Google Scholar 

  105. Lyutikov, M.: Nonlinear force-free configurations in cylindrical geometry. J. Plasma Phys., 905860210, 2020

  106. Maz’ya, V.: Sobolev spaces with applications to elliptic partial differential equations, vol. 342. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011

  107. Mengual, F.: Non-uniqueness of admissible solutions for the 2D Euler equation with \(l^p\) vortex data. arXiv:2304.09578v1

  108. Maiewski, E., Malova, H., Popov, V., Sokoloff, D., Yushkov, E.: Migrating dynamo waves and consequences for stellar current sheets. Solar Phys. 297, 150, 2022

    Article  ADS  Google Scholar 

  109. Moffatt, H.K.: Degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129, 1969

    Article  ADS  Google Scholar 

  110. Mengual, F., Székelyhidi, L., Jr.: Dissipative Euler flows for vortex sheet initial data without distinguished sign. Commun. Pure Appl. Math. 76, 163–221, 2023

    Article  MathSciNet  Google Scholar 

  111. Miura, H., Tsai, T.-P.: Point singularities of 3D stationary Navier–Stokes flows. J. Math. Fluid Mech. 14, 33–41, 2012

    Article  ADS  MathSciNet  Google Scholar 

  112. Moore, K.M., Yadav, R.K., Kulowski, L., Cao, H., Bloxham, J., Connerney, J.E.P., Kotsiaros, S., Jørgensen, J.L., Merayo, J.M.G., Stevenson, D.J., Bolton, S.J., Levin, S.M.: A complex dynamo inferred from the hemispheric dichotomy of Jupiter’s magnetic field. Nature 561, 76–78, 2018

    Article  ADS  Google Scholar 

  113. Masmoudi, N., Zhao, W.: Nonlinear inviscid damping for a class of monotone shear flows in finite channel. arXiv: 2001.08564

  114. Nadirashvili, N.: Liouville theorem for Beltrami flow. Geom. Funct. Anal. 24, 916–921, 2014

    Article  MathSciNet  Google Scholar 

  115. Nečas, J., Ružička, M., Šverák, V.: On Leray’s self-similar solutions of the Navier–Stokes equations. Acta Math. 176(2), 283–294, 1996

    Article  MathSciNet  Google Scholar 

  116. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9), (Supplemento, 2 (Convegno Internazionale di Meccanica Statistica)):279–287, 1949

  117. Pasqualotto, F.: Nonlinear Waves in General Relativity and Fluid Dynamics. PhD thesis, Princeton University, 2020.

  118. Prandtl, L.: Über die entstehung von wirbeln in der idealen flüssigkeit, mit anwendung auf die tragflügeltheorie und andere aufgaben. In Th. v. Kármán and T. Levi-Civita, editors, Vorträge aus dem Gebiete der Hydro- und Aerodynamik (Innsbruck 1922), pp. 18–33. Springer, Berlin, 1924.

  119. Pullin, D.I.: The large-scale structure of unsteady self-similar rolled-up vortex sheets. J. Fluid Mech. 88, 401–430, 1978

    Article  ADS  MathSciNet  Google Scholar 

  120. Pullin, D. I.: On similarity flows containing two-branched vortex sheets, pp. 97–106, 1989

  121. Quittner, P., Souplet, P.: Superlinear parabolic problems. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2007. Blow-up, global existence and steady states.

  122. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, vol. 65. American Mathematical Society, Providence, RI (1986)

    Google Scholar 

  123. Réville, V., Brun, A.S., Matt, S.P., Strugarek, A., Pinto, R.F.: The effect of magnetic topology on thermally driven wind: toward a general formulation of the braking law. Astrophys. J. 798, 116, 2015

    Article  ADS  Google Scholar 

  124. Shafranov, V.D.: On magnetohydrodynamical equilibrium configurations. Sov. Phys. JETP 6, 545–554, 1958

    ADS  MathSciNet  Google Scholar 

  125. Shnirelman, A.: On the long time behavior of fluid flows. Procedia IUTAM 7, 151–160, 2013

    Article  Google Scholar 

  126. Shvydkoy, R.: Lectures on the Onsager conjecture. Discrete Contin. Dyn. Syst. Ser. S 3, 473–496, 2010

    MathSciNet  Google Scholar 

  127. Shvydkoy, R.: A study of energy concentration and drain in incompressible fluids. Nonlinearity 26, 425–436, 2013

    Article  ADS  MathSciNet  Google Scholar 

  128. Shvydkoy, R.: Homogeneous solutions to the 3D Euler system. Trans. Am. Math. Soc. 370, 2517–2535, 2018

    Article  MathSciNet  Google Scholar 

  129. Sokoloff, D., Malova, H., Yushkov, E.: Symmetries of magnetic fields driven by spherical dynamos of exoplanets and their host stars. Symmetry 12, 2085, 2020

    Article  ADS  Google Scholar 

  130. Squire, H.B.: The round laminar jet. Q. J. Mech. Appl. Math. 4, 321–329, 1951

    Article  MathSciNet  Google Scholar 

  131. Šverák, V.: Lecture notes on “topics in mathematical physics". http://math.umn.edu/ sverak/course-notes2011

  132. Tsai, T.-P.: On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. Arch. Ration. Mech. Anal. 143(1), 29–51, 1998

    Article  MathSciNet  Google Scholar 

  133. Tsai, T.-P.: Forward discretely self-similar solutions of the Navier–Stokes equations. Commun. Math. Phys. 328, 29–44, 2014

    Article  ADS  MathSciNet  Google Scholar 

  134. Tsai, T.-P.: Lectures on Navier–Stokes Equations, vol. 192. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2018)

    Book  Google Scholar 

  135. Turkington, B.: Vortex rings with swirl: axisymmetric solutions of the Euler equations with nonzero helicity. SIAM J. Math. Anal. 20, 57–73, 1989

    Article  ADS  MathSciNet  Google Scholar 

  136. Tian, G., Xin, Z.: One-point singular solutions to the Navier–Stokes equations. Topol. Methods Nonlinear Anal. 11, 135–145, 1998

    Article  MathSciNet  Google Scholar 

  137. Ukhovskii, M.R., Yudovich, V.I.: Axially symmetric flows of ideal and viscous fluids filling the whole space. J. Appl. Math. Mech. 32, 52–61, 1968

    Article  MathSciNet  Google Scholar 

  138. Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I. arXiv:1805.09426

  139. Vishik, M.: Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II. arXiv:1805.09440.

  140. Šverák, V.: On Landau’s solutions of the Navier–Stokes equations. J. Math. Sci. (N.Y.), 179, 208–228, 2011

  141. Willem, M.: Minimax Theorems, vol. 24. Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc, Boston, MA (1996)

    Book  Google Scholar 

  142. Wolfson, R., Low, B.C.: Energy buildup in sheared force-free magnetic fields. Astrophys. J. 391, 353–358, 1992

    Article  ADS  Google Scholar 

  143. Zhang, M., Flyer, N., Low, B.: Magnetic helicity of self-similar axisymmetric force-free fields. Astrophys. J. 755, 78, 2012

Download references

Acknowledgements

I thank In-Jee Jeong for discussing self-similar solutions to the Euler equations. This work was made possible in part by the JSPS through the Grant-in-aid for Young Scientist 20K14347 and by MEXT Promotion of Distinctive Joint Research Center Program JPMXP0619217849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Abe.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Communicated by V. Vicol.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

The Nonexistence of Two-Dimensional Reflection Symmetric Homogeneous Solutions

We demonstrate the nonexistence of rotational two-dimensional (2D) reflection symmetric (\(-\alpha \))-homogeneous solutions to the Euler equations (1.1) for \(-1\leqq \alpha \leqq 1\) in Theorem 1.7 (i) and (ii) by using the equations on a semicircle.

1.1 Equations on the Circle

We first derive the 2D homogeneous solution’s equations on a circle [103]. We use the polar coordinates \((r,\phi )\) for \(x=(x_1,x_2)\) and the associated orthogonal frame

$$\begin{aligned} {\textbf{e}}_{r}=\left( \begin{array}{c} \cos \phi \\ \sin \phi \end{array} \right) ,\quad {\textbf{e}}_\phi =\left( \begin{array}{c} -\sin \phi \\ \cos \phi \end{array} \right) . \end{aligned}$$

The 2D Euler equation is expressed as

$$\begin{aligned} \begin{aligned} u\cdot \nabla u+\nabla p&=0,\\ \nabla \cdot u&=0. \end{aligned} \end{aligned}$$
(A.1)

We denote the \(\pi /2\) counterclockwise rotation of \(u=(u^{1},u^{2})\) by \(u^{\perp }=(-u^{2},u^{1})\) and express (A.1) with the rotation \(\omega =\partial _{x_1}u^{2}-\partial _{x_2}u^{1}\) and the Bernoulli function \(\Pi =p+|u|^{2}/2\) as

$$\begin{aligned} \begin{aligned} \omega u^{\perp }+\nabla \Pi&=0,\\ \nabla \cdot u&=0. \end{aligned} \end{aligned}$$
(A.2)

By multiplying u by (A.2\()_1\) and by taking rotation to (A.2\()_1\), respectively,

$$\begin{aligned} u\cdot \nabla \Pi =0,\quad u\cdot \nabla \omega =0. \end{aligned}$$
(A.3)

We denote (\(-\alpha \))-homogeneous solutions u to (A.2) by

$$\begin{aligned} u&=\frac{1}{r^{\alpha }}(v+f{\textbf{e}}_r),\quad v=a{\textbf{e}}_{\phi }, \end{aligned}$$
(A.4)

and the functions \(a(\phi )\) and \(f(\phi )\). The rotation of u is expressed as

$$\begin{aligned} \omega =\frac{1}{r^{\alpha +1}}\left( (1-\alpha )a-f' \right) . \end{aligned}$$
(A.5)

Substituting u into (A.2) implies the equations for (afp),

$$\begin{aligned}&\omega a+2\alpha \Pi =0,\\&\omega f+ \Pi '=0,\\&(1-\alpha )f+a'=0. \end{aligned}$$

The second and third equations imply that p is constant. Thus (af) satisfy the equations on \({\mathbb {S}}^{1}\):

$$\begin{aligned} \begin{aligned}&af'=a^{2}+\alpha f^{2}+2\alpha p,\\&(1-\alpha )f+a'=0. \end{aligned} \end{aligned}$$
(A.6)

The conditions (A.3) imply

$$\begin{aligned} a\Pi '=2\alpha f \Pi ,\quad a\omega '=(\alpha +1) f \omega . \end{aligned}$$
(A.7)

1.2 Radially Symmetric Solutions

The simplest homogeneous solutions to (A.1) are radially symmetric solutions.

Theorem A.1

All radially symmetric (\(-\alpha \))-homogeneous solutions \(u\in C^{1}({\mathbb {R}}^{2}\backslash \{0\})\) to (A.1) for \(\alpha \in {\mathbb {R}}\) are expressed by (A.4) with the constants

$$\begin{aligned} \begin{aligned}&a,f\in {\mathbb {R}},\quad a^{2}+f^{2}+2p=0\quad \text {for}\ \alpha =1, \\&a\in {\mathbb {R}},\quad f=0,\quad a^{2}+2\alpha p=0\quad \text {for}\ \alpha \in {\mathbb {R}}\backslash \{1\}. \end{aligned} \end{aligned}$$
(A.8)

The solution for \(\alpha =1\) is irrotational.

Proof

By radial symmetry, a and f in (A.4) are constant. By (A.6\()_2\), \((\alpha -1)f=0\). If \(\alpha =1\), a satisfies (A.8\()_1\) by (A.6\()_1\). If \(\alpha \ne 1\), \(f=0\) and a satisfies (A.8\()_2\) by (A.6\()_1\). By (A.5), u is irrotational for \(\alpha =1\). \(\square \)

1.3 Reflection Symmetric Solutions

The second simplest homogeneous solutions to (A.1) may be reflection symmetric solutions,

$$\begin{aligned} \begin{aligned} u^{1}(x_1,x_2)&=u^{1}(x_1,-x_2), \\ u^{2}(x_1,x_2)&=-u^{2}(x_1,-x_2),\\ p(x_1,x_2)&=p(x_1,-x_2). \end{aligned} \end{aligned}$$
(A.9)

This symmetry imposes the boundary condition,

$$\begin{aligned} u^{2}(x_1,0)=0. \end{aligned}$$
(A.10)

The rotation is an odd function for the \(x_2\)-variable,

$$\begin{aligned} \omega (x_1,x_2)=-\omega (x_1,-x_2). \end{aligned}$$
(A.11)

Thus continuous \(\omega \) vanishes on the boundary,

$$\begin{aligned} \omega (x_1,0)=0. \end{aligned}$$
(A.12)

The functions (af) satisfy equations on the semicircle for \(\phi \in (0,\pi )\) with constant p:

$$\begin{aligned} \begin{aligned}&af'=a^{2}+\alpha f^{2}+2\alpha p,\\&(1-\alpha )f+a'=0,\\&a(0)=a(\pi )=0. \end{aligned} \end{aligned}$$
(A.13)

Theorem A.2

Irrotational reflection symmetric (\(-\alpha \))-homogeneous solutions \(u\in C^{1}({\mathbb {R}}^{2}\backslash \{0\})\) to (A.1) exist if and only if \(\alpha \in {\mathbb {Z}}\). They are given by (A.4) for

$$\begin{aligned} a=C\sin ((\alpha -1)\phi ),\quad f=C\cos \left( (\alpha -1)\phi \right) ,\quad C\in {\mathbb {R}},\quad \alpha (C^{2}+2p)=0. \end{aligned}$$
(A.14)

Proof

The equation (A.5) implies that \((1-\alpha )a-f'=0\). By (A.13\()_2\) and (A.13\()_3\),

$$\begin{aligned}&-f''=(\alpha -1)^{2}f\quad \text {in}\ (0,\pi ),\\&f'(0)=f'(\pi )=0. \end{aligned}$$

Thus \(\alpha \in {\mathbb {Z}}\) and \(f=C\cos ((\alpha -1)\phi )\) for some constant C. By \((1-\alpha )a-f'=0\) and (A.13\()_3\), \(a=C\sin ((\alpha -1)\phi )\). By (A.13\()_1\), the constant C satisfies (A.14\()_4\). \(\square \)

Remark A.3

For \(\alpha =1\), the irrotational reflection symmetric (\(-1\))-homogeneous solution is \(u=(C/r){\textbf{e}}_{r}\) for \(C\in {\mathbb {R}}\) satisfying \(C^{2}+2p=0\) (The solution \((1.4)_1\) is the case \(C=1\)). For \(\alpha \in {\mathbb {Z}}\backslash \{1\}\), the irrotational reflection symmetric (\(-\alpha \))-homogeneous solution is \(u=(C/r^{n+1})(\sin (n\phi ) {\textbf{e}}_{\phi }+\cos (n\phi ) {\textbf{e}}_{r} ) \) for \(n=\alpha -1\) and \(C\in {\mathbb {R}}\) satisfying \((n+1)(C^{2}+2p)=0\). The stream function of this solution is \(\psi =(-C/n r^{n})\sin (n\phi )\) (The solution \((1.4)_2\) is the case \(C=-n\)).

1.4 The Nonexistence for \(-1\leqq \alpha \leqq 1\)

We demonstrate the nonexistence of rotational reflection symmetric (\(-\alpha \))-homogeneous solutions to (A.1) for \(-1\leqq \alpha \leqq 1\) by using the first integral conditions (A.7).

Proof of Theorem 1.7 (i) and (ii)

For \(\alpha =1\), the equations (A.13\()_2\) and (A.13\()_3\) imply \(a=0\). By (A.13\()_1\), f is constant. Thus u is irrotational by (A.5). We show that reflection symmetric (\(-\alpha \))-homogeneous solutions for \(-1\leqq \alpha < 1\) are irrotational by using the conditions (A.7\()_1\) for \(0\leqq \alpha <1\) and (A.7\()_2\) for \(-1\leqq \alpha <0\).

For \(0<\alpha <1\), we first show that \(u\in C^{1}({\mathbb {R}}^{2}\backslash \{0\})\) satisfies \(a \Pi =0\) in \((0,\pi )\). Suppose that \(a \Pi \ne 0\) on some interval \(J\subset (0,\pi )\). The equations (A.13\()_1\) and (A.7\()_1\) imply

$$\begin{aligned} |\Pi |^{1-\alpha }|a|^{2\alpha }=C, \end{aligned}$$

for some constant C. If \(C\ne 0\), J is extendable to \((0,\pi )\). However, the condition \(0<\alpha <1\) and the boundary condition (A.13\()_3\) imply that the left-hand side vanishes as \(\phi \rightarrow 0\). Thus \(C=0\). This contradicts \(a\Pi \ne 0\) on J. Hence \(a\Pi =0\) in \((0,\pi )\).

We show that \(\Pi =0\) in \((0,\pi )\). Suppose that \(\Pi \ne 0\) on some interval \(J\subset (0,\pi )\). Then, \(a=0\) and \(f=0\) by (A.13\()_2\). Since \(p=0\) by (A.13\()_1\), \(\Pi =0\). This is a contradiction and hence \(\Pi =0\) in \((0,\pi )\). By (A.2), \(\omega u^{\perp }=0\). Thus \(\omega =0\) in \((0,\pi )\) and u is irrotational.

For \(\alpha =0\), the condition (A.7\()_1\) implies \(a\Pi '=0\). Suppose that \(\Pi '\ne 0\) on some interval \(J\subset (0,\pi )\). Then, \(a=0\) and \(f=0\) by (A.13\()_2\). Hence \(\Pi '=0\). This is a contradiction and hence \(\Pi '=0\) in \((0,\pi )\). By (A.2), \(\omega =0\) in \((0,\pi )\) and u is irrotational.

For \(-1< \alpha <0\), we first show that \(u\in C^{2}({\mathbb {R}}^{2}\backslash \{0\})\) satisfies \(a \omega =0\) in \((0,\pi )\). Suppose that \(a\omega \ne 0\) on some interval \(J\subset (0,\pi )\). The equations (A.13)\(_2\) and (A.7)\(_2\) imply

$$\begin{aligned} |\omega |^{1-\alpha }|a|^{1+\alpha }=C, \end{aligned}$$

for some constant C. By applying the same argument as that for \(\Pi \) and \(0<\alpha <1\), we conclude that \(C=0\). This contradicts \(a\omega \ne 0\) on J. Hence \(a\omega =0\) in \((0,\pi )\).

We show that \(\omega =0\) in \((0,\pi )\). Suppose that \(\omega \ne 0\) on some interval \(J\subset (0,\pi )\). Then, \(a=0\) and \(f=0\) by (A.13\()_2\). Hence \(\omega =0\) by (A.5). This is a contradiction and hence \(\omega =0\) in \((0,\pi )\). Thus u is irrotational.

For \(\alpha =-1\), the condition (A.7\()_2\) implies that \(a\omega '=0\). If \(\omega '\ne 0\) on some interval \(J\subset (0,\pi )\), \(a=0\) and \(f=0\) by (A.13\()_2\) and hence \(\omega =0\) by (A.5). This is a contradiction. Thus \(\omega '=0\) in \((0,\pi )\). Since \(\omega \in C^{1}({\mathbb {R}}^{2}\backslash \{0\})\), the boundary condition (A.12) implies that \(\omega =0\). Thus u is irrotational. \(\square \)

The Existence of Two-and-a-Half-Dimensional Reflection Symmetric Homogeneous Solutions

We demonstrate the existence of rotational two-dimensional (2D) reflection symmetric (\(-\alpha \))-homogeneous solutions to (1.1) in Theorem 1.7 (iii) and (iv). We consider more general two-and-a-half-dimensional (D) reflection symmetric solutions \(u=(u^{1},u^{2},u^{3})\) to (1.1) satisfying

$$\begin{aligned} \begin{aligned} u^{1}(x_1,x_2)&=u^{1}(x_1,-x_2), \\ u^{2}(x_1,x_2)&=-u^{2}(x_1,-x_2), \\ u^{3}(x_1,x_2)&=-u^{3}(x_1,-x_2). \end{aligned} \end{aligned}$$
(B1)

Theorem B. 1

The following holds for rotational D reflection symmetric (\(-\alpha \))-homogeneous solutions \(u=u^{H}+u^{3}e_z\) and \(r^{2\alpha }p=\text {const.}\) to (1.1):

  1. (i)

    For \(\alpha >1\), solutions \(u\in C^{1}({\mathbb {R}}^{2}\backslash \{0\})\) such that \(u^{H}\in C^{2}({\mathbb {R}}^{2}\backslash \{0\})\) and \(u^{3}\in C^{1}({\mathbb {R}}^{2}\backslash \{0\})\) exist.

  2. (ii)

    For \(\alpha <-1\), solutions \(u\in C({\mathbb {R}}^{2})\) such that \(u^{H}\in C^{1}({\mathbb {R}}^{2}\backslash \{0\})\cap C({\mathbb {R}}^{2})\) and \(u^{3}\in C({\mathbb {R}}^{2})\) exist.

1.1 The Existence of Solutions to the Autonomous Dirichlet Problem

We construct solutions in Theorem B. 1 by solutions of the automonous Dirichlet problem. We consider symmetric solenoidal vector fields (B1) expressed by the Clebsch representation

$$\begin{aligned} u=\nabla \times (\psi \nabla z)+G \nabla z. \end{aligned}$$
(B2)

here, \(\nabla =\nabla _{{\mathbb {R}}^{3}}\) is the gradient in \({\mathbb {R}}^{3}\) and \((r,\phi ,z)\) are the cylindrical coordinates. We denote the function \(u^{3}\) by G. We assume that the stream function \(\psi \) is an odd function for the \(x_2\)-variable and vanishes on the \(x_1\)-axis,

$$\begin{aligned} \psi (x_1,0)=0. \end{aligned}$$

the rotation of u is expressed as

$$\begin{aligned} \nabla \times u=\nabla \times (G\nabla z)+(-\Delta \psi ) \nabla z. \end{aligned}$$

For translation-reflection symmetric solutions to the Euler equations (2.1), the Bernoulli function \(\Pi =p+|u|^{2}/2\) and the function G are first integrals of u, i.e.,

$$\begin{aligned} u\cdot \nabla \Pi =0, \quad u\cdot \nabla G=0. \end{aligned}$$

We assume that they are globally functions of \(\psi \), i.e., \(\Pi =\Pi (\psi )\), \(G=G(\psi )\). By using the triple product,

$$\begin{aligned} (\nabla \times u)\times u&=-\frac{1}{2}\nabla G^{2}+(-\Delta \psi )\nabla \psi ,\\ \nabla \Pi&=\Pi '(\psi )\nabla \psi . \end{aligned}$$

Here, \(\Pi '(\psi )\) denotes the differentiation for the variable \(\psi \). Thus \(\psi \) satisfies the semilinear Dirichlet problem:

$$\begin{aligned} \begin{aligned} -\Delta \psi&=-\Pi '(\psi )+G'(\psi )G(\psi ),\quad (x_1,x_2)\in {\mathbb {R}}^{2}_{+}, \\ \psi (x_1,0)&=0,\quad x_1\in {\mathbb {R}}. \end{aligned} \end{aligned}$$
(B3)

Solutions to the above 2D Dirichlet problem for prescribed \(\Pi (\psi )\) and \(G(\psi )\) provide D reflection symmetric solutions to (1.1).

We choose particular \(\Pi (\psi )\) and \(G(\psi )\) to construct D reflection symmetric homogeneous solutions to (1.1). For (\(-\alpha \))-homogeneous solutions to (1.1), stream functions are (\(-\alpha +1\))-homogeneous and expressed as

$$\begin{aligned} \psi (x_1,x_2)=\frac{w(\phi )}{r^{\beta }},\quad \beta =\alpha -1. \end{aligned}$$

The left-hand side of (B.3\()_1\) is expressed as

$$\begin{aligned} -\Delta \psi =-\frac{1}{r^{\beta +2}}(\beta ^{2}w+w''). \end{aligned}$$

We choose the functions \(\Pi (\psi )\) and \(G(\psi )\) by

$$\begin{aligned} \begin{aligned} \Pi (\psi )&=C_1|\psi |^{2+\frac{2}{\beta }}=C_1\frac{|w|^{2+\frac{2}{\beta }}}{r^{2\beta +2}},\\ G(\psi )&=C_2\psi |\psi |^{\frac{1}{\beta }}=C_2\frac{w|w|^{\frac{1}{\beta }}}{r^{\beta +1}}, \end{aligned} \end{aligned}$$

for constants \(C_1\), \(C_2\in {\mathbb {R}}\). The right-hand side of (B.3\()_1\) is is expressed as

$$\begin{aligned} -\Pi '(\psi )+G'(\psi )G(\psi )=c\frac{w|w|^{\frac{2}{\beta }}}{r^{\beta +2}} \end{aligned}$$

for the constant

$$\begin{aligned} c=\left( -2C_1+C_{2}^{2}\right) \left( 1+\frac{1}{\beta }\right) . \end{aligned}$$

Then function w satisfies the autonomous Dirichlet problem:

$$\begin{aligned} \begin{aligned} -w''&=\beta ^{2}w+cw|w|^{\frac{2}{\beta }},\quad \phi \in (0,\pi ),\\ w(0)&=w(\pi )=0. \end{aligned} \end{aligned}$$
(B4)

Theorem A.4

For \(\beta \in {\mathbb {R}}\backslash [-2,0]\) and \(c>0\), there exists a solution \(w\in C^{2}[0,\pi ]\) to (B4). For \(\beta >0\), \(w\in C^{3}[0,\pi ]\). For \(0<\beta <1\), there exists a positive solution to (B4).

Remark B. 2

  1. (i)

    Positive solutions to (B4) for \(0<\beta <1\) are symmetric with respect to \(\phi =\pi /2\) and decreasing for \(\phi >\pi /2\) since (B.4\()_1\) is an autonomous equation [67, Theorem 1], cf. [67, Theorem \(1'\)].

  2. (ii)

    No positive solutions to (B4) exist for \(\beta \in {\mathbb {R}}\backslash [-2,1)\) and \(c>0\), cf. [121, Remarks 6.3 (ii)]. In fact, the principal eigenvalue of the operator \(-\partial _{\phi }^{2}\) is one and its associated eigenfunction is \(\sin \phi \). By multiplying \(\sin \phi \) by (B.4\()_1\) and integration by parts,

    $$\begin{aligned} (1-\beta ^{2})\int _{0}^{\pi }w \sin \phi \text {d}\phi =c\int _{0}^{\pi }w |w|^{\frac{2}{\beta }}\sin \phi \text {d}\phi . \end{aligned}$$

    Thus \(0<\beta <1\) for positive w.

  3. (iii)

    The number of zero points are finite for solutions to (B4) for \(\beta >0\) by the uniqueness of the ODE as observed for the nonautonomous case in Remarks 3.2 (iii).

Proof

The construction of solutions to (B4) is easier than that of solutions to (3.4). In fact, the problem (B4) is expressed as

$$\begin{aligned} \begin{aligned} -L_{\beta }w&=g(w)\quad \text {in}\ \Omega ,\\ w&=0\qquad \text {on}\ \partial \Omega , \end{aligned} \end{aligned}$$
(B5)

with the symbols \(L_{\beta }=\partial _{\phi }^{2}+\beta ^{2}\), \(g(w)= c w|w|^{\frac{2}{\beta }}\), and \(\Omega =(0,\pi )\). The eigenvalues of the operator \(-L_{\beta }\) are explicitly given by \(\mu _{n}=n^{2}-\beta ^{2}\) for \(n=1,2,\dots \). Hence \(\mu _1>0\) for \(0<\beta <1\) and \(\mu _1\leqq 0\) for \(\beta \in {\mathbb {R}}\backslash [-2,1)\). The orthonormal basis on \(L^{2}(\Omega )\) are \(e_n=\sqrt{2/\pi }\sin {n\phi }\). We take \(N\in {\mathbb {N}}\) such that \(\mu _1<\mu _2<\cdots<\mu _N\leqq 0<\mu _{N+1}<\cdots \) and consider the direct sum decomposition \(H^{1}_{0}(\Omega )=Y\oplus Z\) for \(Y=\text {span}(e_1,\cdots ,e_N)\) and \(Z=\{z\in H^{1}_{0}(\Omega )\ |\ (z,y)_{L^{2}}=0,\ y \in Y\ \}\). The functional associated with (B5) is the following:

$$\begin{aligned} I[w]&=\frac{1}{2}\int _{\Omega }(|w'|^{2}-\beta ^{2}|w|^{2})\text {d}\phi -\int _{\Omega }G(w)\text {d}\phi ,\\ G(w)&=\int _{0}^{w}g(s)\text {d}s=\frac{c \beta }{2(\beta +1)}|w|^{2(1+\frac{1}{\beta })}. \end{aligned}$$

This functional satisfies the (PS\()_c\) condition for any \(c\in {\mathbb {R}}\) and desired estimates on subsets. We apply the mountain pass theorem (Lemma 3.4) for \(0<\beta <1\), the linking theorem (Lemma 3.6) for \(1\leqq \beta \), and the saddle point theorem (Lemma 3.7) for \(\beta <-2\). Since the equation (B4) is autonomous, critical points \(w\in H^{1}_{0}(\Omega )\) belong to \(w\in C^{2}[0,\pi ]\). For \(\beta >0\), differentiating (B.4\()_1\) by \(\phi \) implies that \(w\in C^{3}[0,\pi ]\). The existence of positive solutions follows from an application of the mountain pass theorem to a modified problem for \(0<\beta <1\) as we observed for the nonautonomous equation in (3.14). \(\square \)

1.2 Regularity of Two-and-a-Half-Dimensional Reflection Symmetric Homogeneous Solutions

We construct D reflection symmetric homogeneous solutions by solutions of (B4) in Theorem A.4. We choose constants \(\alpha \), \(C_1\), and \(C_2\) satisfying

$$\begin{aligned} \alpha \in {\mathbb {R}}\backslash [-1,1],\quad C_1,C_2\in {\mathbb {R}},\quad -2C_1+C_2^{2}>0, \end{aligned}$$
(B6)

so that

$$\begin{aligned} \beta =\alpha -1\in {\mathbb {R}}\backslash [-2,0],\quad c=(-2C_1+C_2^{2})\left( 1+\frac{1}{\beta }\right) >0. \end{aligned}$$
(B7)

Lemma B. 3

Let \(\alpha \), \(C_1\), and \(C_2\) satisfy (B6). Let \(w\in C^{2}[0,\pi ]\) be a solution to (B4) for \(\beta \) and c in (B7). For the odd extension of w to \([-\pi ,0]\), set

$$\begin{aligned} \psi&=\frac{w(\phi )}{r^{\beta }},\quad \Pi =C_1|\psi |^{2+\frac{2}{\beta }},\quad G=C_2\psi |\psi |^{\frac{1}{\beta }},\\ u&=\nabla \times (\psi \nabla z)+G\nabla z=u^{H}+u^{3}e_{z},\\ p&=\Pi -\frac{1}{2}|u|^{2}. \end{aligned}$$

Then u is (\(-\alpha \))-homogeneous and \(r^{2\alpha }p\) is constant. They satisfy the following regularity properties:

  1. (i)

    For \(\alpha <-1\),

    $$\begin{aligned} u^{H}\in C^{1}({\mathbb {R}}^{2}\backslash \{0\})\cap C({\mathbb {R}}^{2}),\quad u^{3}\in C({\mathbb {R}}^{2}). \end{aligned}$$
    (B8)
  2. (ii)

    For \(\alpha >1\),

    $$\begin{aligned} u^{H}\in C^{2}({\mathbb {R}}^{2}\backslash \{0\}),\quad u^{3}\in C^{1}({\mathbb {R}}^{2}\backslash \{0\}). \end{aligned}$$
    (B9)

Proof

The functions u and p are expressed in terms of w as

$$\begin{aligned} \begin{aligned} r^{\beta +1}u&=w'e_r+\beta we_{\phi }+C_2w|w|^{\frac{1}{\beta }}e_{z}, \\ r^{2\beta +2}p&=-\frac{c\beta }{2(\beta +1)}|w|^{2+\frac{2}{\beta }}-\frac{1}{2}\left( |w'|^{2}+\beta ^{2}w^{2} \right) . \end{aligned} \end{aligned}$$

Differentiating the second equation by \(\phi \) implies that \(r^{2\beta +2}p\) is independent of \(\phi \). For \(\beta <-2\), \(w\in C^{2}[-\pi ,\pi ]\) implies that \(u^{H}\in C^{1}({\mathbb {R}}^{2}\backslash \{0\})\). Since u vanishes at the origin, \(u\in C({\mathbb {R}}^{2})\). Thus (B8) holds. For \(\beta >0\), \(w\in C^{3}[-\pi ,\pi ]\) implies (B9). \(\square \)

We show that (up) in Lemma B. 3 are homogeneous solutions to (1.1). In the translation reflection symmetric setting, the equations (1.1) for \(u=u^{H}+u^{3}e_{z}\) are equivalent to

$$\begin{aligned} \begin{aligned} u^{H}\cdot \nabla _{{\mathbb {R}}^{2}} u^{H}+\nabla _{{\mathbb {R}}^{2}} p&=0,\\ \nabla _{{\mathbb {R}}^{2}} \cdot u^{H}&=0,\\ u^{H}\cdot \nabla _{{\mathbb {R}}^{2}} u^{3}&=0. \end{aligned} \end{aligned}$$
(B10)

Proposition B. 4

The functions (up) in Lemma B. 3 are (\(-\alpha \))-homogeneous solutions to (B10) in \({\mathbb {R}}^{2}\backslash \{0\}\) for \(\alpha >1\) and in \({\mathbb {R}}^{2}\) for \(\alpha <-1\).

Proof

Since \(w\in C^{2}[-\pi ,\pi ]\), the stream function \(\psi \in C^{2}({\mathbb {R}}^{2}\backslash \{0\})\) is a reflection symmetric solution to the elliptic equation (B.3\()_1\) in \({\mathbb {R}}^{2}\backslash \{0\}\) for

$$\begin{aligned} \Pi '(\psi )&=2C_1\left( 1+\frac{1}{\beta }\right) \frac{w|w|^{\frac{2}{\beta }}}{r^{\beta +2}},\\ \left( \frac{1}{2}G^{2}(\psi ) \right) '&=C_2^{2}\left( 1+\frac{1}{\beta }\right) \frac{w|w|^{\frac{2}{\beta }}}{r^{\beta +2}}. \end{aligned}$$

We suppress the subscript for \(\nabla =\nabla _{{\mathbb {R}}^{2}}\) and use the symbol \(\nabla ^{\perp }=(-\partial _2,\partial _1)\). By multiplying \(\nabla \psi \) by (B.3\()_1\),

$$\begin{aligned} -\Delta \psi \nabla \psi +\nabla \left( \Pi -\frac{1}{2}G^{2}\right) =0. \end{aligned}$$

Since \(u^{H}=-\nabla ^{\perp } \psi \), \(-\Delta \psi =\nabla ^{\perp } \cdot u^{H}\), and \(p=\Pi -|u^{H}|^{2}/2-|G|^{2}/2\),

$$\begin{aligned} \nabla ^{\perp } \cdot u^{H}(u^{H})^{\perp }+\nabla \left( p+\frac{1}{2}|u^{H}|^{2}\right) =0. \end{aligned}$$

By the identity,

$$\begin{aligned} u^{H}\cdot \nabla u^{H}=\nabla ^{\perp } \cdot u^{H}(u^{H})^{\perp }+\nabla \frac{1}{2}|u^{H}|^{2}, \end{aligned}$$

(B.10\()_1\) and (B.10\()_2\) hold in \({\mathbb {R}}^{2}\backslash \{0\}\). For \(\alpha >1\), taking divergence to

$$\begin{aligned} u^{H}u^{3}=-\nabla ^{\perp } \left( C_2\frac{\beta }{2\beta +1}|\psi |^{2+\frac{1}{\beta }}\right) , \end{aligned}$$

implies that (B.10\()_3\) holds in \({\mathbb {R}}^{2}\backslash \{0\}\). Thus (up) is a (\(-\alpha \))-homogeneous solution to (B10) in \({\mathbb {R}}^{2}\backslash \{0\}\) for \(\alpha >1\).

For \(\alpha <-1\), (B.10\()_1\) and (B.10\()_2\) in \({\mathbb {R}}^{2}\backslash \{0\}\) hold for \(u^{H}\in C^{1}({\mathbb {R}}^{2}\backslash \{0\})\cap C({\mathbb {R}}^{2})\) and (B.10\()_3\) in \({\mathbb {R}}^{2}\backslash \{0\}\) holds for \(u^{3}\in C({\mathbb {R}}^{2})\) in the distributional sense. Since (up) vanishes at the origin, by the cut-off function argument around the origin, (up) satisfies (B10) in \({\mathbb {R}}^{2}\) in the distributional sense. \(\square \)

Proof of Theorems B. 1, 1.7 (iii) and (iv) and 1.10

For the constants \(\alpha \), \(C_1\) and \(C_2\) satisfying (B6), Lemma B. 3 and Proposition B. 4 imply the existence of rotational reflection symmetric D (\(-\alpha \))-homogeneous solutions to (1.1) in Theorem B. 1. In particular, taking \(C_2=0\) implies the existence of rotational 2D reflection symmetric (\(-\alpha \))-homogeneous solutions in Theorem 1.7 (iii) and (iv). For \(1<\alpha <2\), the existence of positive solutions to (B4) implies the existence of 2D rotational reflection symmetric (\(-\alpha \))-homogeneous solutions whose stream function level sets are homeomorphic to those of the irrotational (\(-2\))-homogeneous solution in Theorem 1.8. \(\square \)

Remark B. 5

For \(\alpha \in {\mathbb {R}}\backslash [-1,1]\), \(C_1=0\) and \(C_2\ne 0\), the solutions in Theorem B. 1 are D reflection symmetric Beltrami (\(-\alpha \))-homogeneous solutions to (1.1). By \(-\Delta \psi =G'G\) and the Clebsch representation for \(\nabla =\nabla _{{\mathbb {R}}^{3}}\),

$$\begin{aligned} \nabla \times u=G'(\nabla \times (\psi \nabla z)+G\nabla z)=G'u. \end{aligned}$$

For \(\alpha >1\), u admits the proportionality factor \(\varphi =G'=C_2(1+1/\beta )|\psi |^{1/\beta }\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, K. Existence of Homogeneous Euler Flows of Degree \(-\alpha \notin [-2,0]\). Arch Rational Mech Anal 248, 30 (2024). https://doi.org/10.1007/s00205-024-01974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00205-024-01974-0

Navigation