Skip to main content
Log in

Quantitative measurements at the lumbosacral junction are more reliable parameters for identifying and numbering lumbosacral transitional vertebrae

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate quantitative parameters to identify the anatomic variation lumbosacral transitional vertebrae (LSTV) and compare them with the landmarks commonly used at present.

Methods

A total of 2,845 PET/CT scans were reviewed, and the patients with 23 and 25 presacral vertebrae were included. The quantitative parameters, including the anterior-edge vertebral angle (AVA) of the lowest lumbar-type vertebra, the ratio of the length of the inferior endplate to that of the superior endplate (RISE) of the uppermost sacral-type vertebra and the lumbosacral intervertebral disc angle (LSIVDA), and the anatomical landmarks, including the iliac crest tangent (ICT) level, the iliolumbar ligament (ILL) origin level and psoas proximal insertion, were all evaluated to determine their ability to identify LSTV.

Results

The values of AVA and RISE were significantly different between the LSTV group and the control group, and between subgroups of LSTV. The cutoff value for AVA was 73.0°, with an accuracy, sensitivity, and specificity of 91.1%, 77.5%, and 88.3%, and that for RISE was 0.79, with an accuracy, sensitivity, and specificity of 90.3%, 77.5%, and 94.2%, while that for LSIVDA was 14.15°, with an accuracy, sensitivity, and specificity of 75.9%, 65.7%, and 78.3%, to differentiate L5 sacralization from S1 lumbarization. For differentiating the controls from LSTV, the accuracy, sensitivity, and specificity of the ICT level and proximal psoas insertion were 78.0%, 70.2%, and 95.0%, versus 71.7%, 61.7%, and 94.0%.

Conclusions

Compared with the anatomical landmarks, the quantitative measurements at the lumbosacral junction, including AVA and RISE, may be more helpful for differentiating subgroups of LSTV especially if only lumbar spine imaging is available.

Key Points

• The quantitative parameters, the anterior-edge vertebral angle (AVA) of the lowest lumbar-type vertebra and the ratio of the length of the inferior endplate to that of the superior endplate (RISE) of the uppermost sacral-type vertebra, are more helpful for distinguishing L5 sacralization from S1 lumbarization than the previously proposed anatomic landmarks.

• AVA and RISE represent relevant changes in the curvature at the lumbosacral region and the shape of the transitional vertebral body, respectively.

• AVA and RISE are easily assessed, with high intra- and inter-reader reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under the ROC curve

AVA:

Anterior-edge vertebral angle

CI:

Confidence interval

ICCs:

Intra-class correlation coefficients

ICT:

Iliac crest tangent

ILL:

Iliolumbar ligament

LSIVDA:

Lumbosacral intervertebral disc angle

LSTV:

Lumbosacral transitional vertebrae

MPR:

Multiplanar reconstruction

OR:

Odds ratios

PET/CT:

Positron emission tomography combined with computerized tomography

PSM:

Propensity score matching

PSV:

Presacral vertebrae

RISE:

Ratio of the length of the inferior endplate to that of the superior endplate

ROC:

Receiver operating characteristic

VR:

Volume-rendered

References

  1. Jancuska JM, Spivak JM, Bendo JA (2015) A review of symptomatic lumbosacral transitional vertebrae: Bertolotti’s syndrome. Int J Spine Surg 9:42

    Article  PubMed  PubMed Central  Google Scholar 

  2. Konin GP, Walz DM (2010) Lumbosacral transitional vertebrae: classification, imaging findings, and clinical relevance. AJNR Am J Neuroradiol 31:1778–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lian J, Levine N, Cho W (2018) A review of lumbosacral transitional vertebrae and associated vertebral numeration. Eur Spine J 27:995–1004

    Article  PubMed  Google Scholar 

  4. Apazidis A, Ricart PA, Diefenbach CM, Spivak JM (2011) The prevalence of transitional vertebrae in the lumbar spine. Spine J 11:858–862

    Article  PubMed  Google Scholar 

  5. Bron JL, van Royen BJ, Wuisman PIJM (2007) The clinical significance of lumbosacral transitional anomalies. Acta Orthop Belg 73:687–695

    PubMed  Google Scholar 

  6. Nardo L, Alizai H, Virayavanich W et al (2012) Lumbosacral transitional vertebrae: association with low back pain. Radiology 265:497–503

    Article  PubMed  PubMed Central  Google Scholar 

  7. Paik NC, Lim CS, Jang HS (2013) Numeric and morphological verification of lumbosacral segments in 8280 consecutive patients. Spine (Phila Pa 1976) 38:E573–E578

    Article  Google Scholar 

  8. Tang M, Yang X-f, Yang S-w et al (2014) Lumbosacral transitional vertebra in a population-based study of 5860 individuals: prevalence and relationship to low back pain. Eur J Radiol 83:1679–1682

    Article  PubMed  Google Scholar 

  9. Tucker BJ, Weinberg DS, Liu RW (2019) Lumbosacral transitional vertebrae: a cadaveric investigation of prevalence and relation to lumbar degenerative disease. Clin Spine Surg 32:E330–E334

    Article  PubMed  Google Scholar 

  10. Bertolotti M (1917) Contributo alla conoscenza dei vizi di differenziazione regionale del rachide con speciale riguardo all assimilazione sacrale della v. lombare. Radiol Med (Torino) 4:113–144

    Google Scholar 

  11. Apaydin M, Uluc ME, Sezgin G (2019) Lumbosacral transitional vertebra in the young men population with low back pain: anatomical considerations and degenerations (transitional vertebra types in the young men population with low back pain). Radiol Med 124:375–381

    Article  PubMed  Google Scholar 

  12. Hanhivaara J, Määttä JH, Niinimäki J, Nevalainen MT (2020) Lumbosacral transitional vertebrae are associated with lumbar degeneration: retrospective evaluation of 3855 consecutive abdominal CT scans. Eur Radiol 30:3409–3416

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bahadir Ulger FE, Illeez OG (2020) The effect of lumbosacral transitional vertebrae (LSTV) on paraspinal muscle volume in patients with low back pain. Acad Radiol 27:944–950

    Article  PubMed  Google Scholar 

  14. Aihara T, Takahashi K, Ogasawara A, Itadera E, Ono Y, Moriya H (2005) Intervertebral disc degeneration associated with lumbosacral transitional vertebrae: a clinical and anatomical study. J Bone Joint Surg Br 87:687–691

    Article  CAS  PubMed  Google Scholar 

  15. Luoma K, Vehmas T, Raininko R, Luukkonen R, Riihimäki H (2004) Lumbosacral transitional vertebra: relation to disc degeneration and low back pain. Spine (Phila Pa 1976) 29:200–205

  16. Porter NA, Lalam RK, Tins BJ, Tyrrell PNM, Singh J, Cassar-Pullicino VN (2014) Prevalence of extraforaminal nerve root compression below lumbosacral transitional vertebrae. Skeletal Radiol 43:55–60

    Article  PubMed  Google Scholar 

  17. Kanematsu R, Hanakita J, Takahashi T, Minami M, Tomita Y, Honda F (2020) Extraforaminal entrapment of the fifth lumbar spinal nerve by nearthrosis in patients with lumbosacral transitional vertebrae. Eur Spine J 29:2215–2221

    Article  PubMed  Google Scholar 

  18. Shibayama M, Ito F, Miura Y, Nakamura S, Ikeda S, Fujiwara K (2011) Unsuspected reason for sciatica in Bertolotti’s syndrome. J Bone Joint Surg Br 93:705–707

    Article  CAS  PubMed  Google Scholar 

  19. Akbar JJ, Weiss KL, Saafir MA, Weiss JL (2010) Rapid MRI detection of vertebral numeric variation. AJR Am J Roentgenol 195:465–466

    Article  PubMed  Google Scholar 

  20. Mody MG, Nourbakhsh A, Stahl DL, Gibbs M, Alfawareh M, Garges KJ (2008) The prevalence of wrong level surgery among spine surgeons. Spine (Phila Pa 1976) 33:194–198

  21. Hughes RJ, Saifuddin A (2006) Numbering of lumbosacral transitional vertebrae on MRI: role of the iliolumbar ligaments. AJR Am J Roentgenol 187:W59–W65

    Article  PubMed  Google Scholar 

  22. Peckham ME, Hutchins TA, Stilwill SE et al (2017) Localizing the L5 vertebra using nerve morphology on MRI: an accurate and reliable technique. AJNR Am J Neuroradiol 38:2008–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ropars F, Mesrar J, Ognard J, Querellou S, Rousset J, Garetier M (2019) Psoas proximal insertion as a simple and reliable landmark for numbering lumbar vertebrae on MRI of the lumbar spine. Eur Radiol 29:2608–2615

    Article  PubMed  Google Scholar 

  24. Albano D, Messina C, Gambino A et al (2020) Segmented lordotic angles to assess lumbosacral transitional vertebra on EOS. Eur Spine J 29:2470–2476

    Article  PubMed  Google Scholar 

  25. Josiah DT, Boo S, Tarabishy A, Bhatia S (2017) Anatomical differences in patients with lumbosacral transitional vertebrae and implications for minimally invasive spine surgery. J Neurosurg Spine 26:137–143

    Article  PubMed  Google Scholar 

  26. Haffer H, Becker L, Putzier M et al (2021) Changes of fixed anatomical spinopelvic parameter in patients with lumbosacral transitional vertebrae: a matched pair analysis. Diagnostics (Basel) 11:59

    Article  Google Scholar 

  27. Khalsa AS, Mundis GM Jr et al (2018) Variability in assessing spinopelvic parameters with lumbosacral transitional vertebrae: inter- and intraobserver reliability among spine surgeons. Spine (Phila Pa 1976) 43:813–816

    Article  Google Scholar 

  28. Carrino JA, Campbell PD Jr et al (2011) Effect of spinal segment variants on numbering vertebral levels at lumbar MR imaging. Radiology 259:196–202

    Article  PubMed  Google Scholar 

  29. Farshad-Amacker NA, Aichmair A, Herzog RJ, Farshad M (2015) Merits of different anatomical landmarks for correct numbering of the lumbar vertebrae in lumbosacral transitional anomalies. Eur Spine J 24:600–608

    Article  PubMed  Google Scholar 

  30. Carapuço M, Nóvoa A, Bobola N, Mallo M (2005) Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev 19:2116–2121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Thawait GK, Chhabra A, Carrino JA (2012) Spine segmentation and enumeration and normal variants. Radiol Clin North Am 50:587–598

    Article  PubMed  Google Scholar 

  32. Mahato NK (2010) Morphological traits in sacra associated with complete and partial lumbarization of first sacral segment. Spine J 10:910–915

    Article  PubMed  Google Scholar 

  33. Abola MV, Teplensky JR, Cooperman DR, Bauer JM, Liu RW (2019) Pelvic incidence in spines with 4 and 6 lumbar vertebrae. Global Spine J 9:708–712

    Article  PubMed  PubMed Central  Google Scholar 

  34. Price R, Okamoto M, Le Huec JC, Hasegawa K (2016) Normative spino-pelvic parameters in patients with the lumbarization of S1 compared to a normal asymptomatic population. Eur Spine J 25:3694–3698

    Article  CAS  PubMed  Google Scholar 

  35. Yokoyama K, Kawanishi M, Yamada M et al (2016) Spinopelvic alignment and sagittal balance of asymptomatic adults with 6 lumbar vertebrae. Eur Spine J 25:3583–3588

    Article  PubMed  Google Scholar 

  36. Mahato NK (2011) Disc spaces, vertebral dimensions, and angle values at the lumbar region: a radioanatomical perspective in spines with L5-S1 transitions: clinical article. J Neurosurg Spine 15:371–379

    Article  PubMed  Google Scholar 

  37. Mahato NK (2013) Pars inter-articularis and laminar morphology of the terminal lumbar vertebra in lumbosacral transitional variations. N Am J Med Sci 5:357–361

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mahato NK (2011) Facet dimensions, orientation, and symmetry at L5-S1 junction in lumbosacral transitional States. Spine (Phila Pa 1976) 36:E569–E573

  39. Mahato NK (2011) Pedicular anatomy of the first sacral segment in transitional variations of the lumbo-sacral junction. Spine (Phila Pa 1976) 36:E1187–E1192

  40. Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–367

  41. Zhou PL, Moon JY, Tishelman JC et al (2018) Interpretation of spinal radiographic parameters in patients with transitional lumbosacral vertebrae. Spine Deform 6(5):587–592

    Article  PubMed  Google Scholar 

  42. Castellvi AE, Goldstein LA, Chan DP (1984) Lumbosacral transitional vertebrae and their relationship with lumbar extradural defects. Spine (Phila Pa 1976) 9:493–495

  43. French HD, Somasundaram AJ, Schaefer NR, Laherty RW (2014) Lumbosacral transitional vertebrae and its prevalence in the Australian population. Global Spine J 4:229–232

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tins BJ, Balain B (2016) Incidence of numerical variants and transitional lumbosacral vertebrae on whole-spine MRI. Insights Imaging 7:199–203

    Article  PubMed  PubMed Central  Google Scholar 

  45. Elster AD (1989) Bertolotti’s syndrome revisited. Transitional vertebrae of the lumbar spine. Spine (Phila Pa 1976) 14:1373–1377

  46. Gay RE, Ilharreborde B, Zhao K, Zhao C, An K-N (2006) Sagittal plane motion in the human lumbar spine: comparison of the in vitro quasistatic neutral zone and dynamic motion parameters. Clin Biomech (Bristol, Avon) 21:914–919

    Article  Google Scholar 

  47. Yilgor C, Sogunmez N, Boissiere L et al (2017) Global Alignment and Proportion (GAP) score: development and validation of a new method of analyzing spinopelvic alignment to predict mechanical complications after adult spinal deformity surgery. J Bone Joint Surg Am 99:1661–1672

    Article  PubMed  Google Scholar 

  48. Gündüz N, Durukan G, Eser MB, Aslan A, Kabaalioğlu A (2019) Role of iliac crest tangent in correct numbering of lumbosacral transitional vertebrae. Turk J Med Sci 49:184–189

    PubMed  PubMed Central  Google Scholar 

  49. Tokgoz N, Ucar M, Erdogan AB, Kilic K, Ozcan C (2014) Are spinal or paraspinal anatomic markers helpful for vertebral numbering and diagnosing lumbosacral transitional vertebrae? Korean J Radiol 15(2):258–266

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lee CH, Seo BK, Choi YC et al (2004) Using MRI to evaluate anatomic significance of aortic bifurcation, right renal artery, and conus medullaris when locating lumbar vertebral segments. AJR Am J Roentgenol 182(5):1295–1300

    Article  PubMed  Google Scholar 

  51. Tureli D, Ekinci G, Baltacioglu F (2014) Is any landmark reliable in vertebral enumeration? A study of 3.0-Tesla lumbar MRI comparing skeletal, neural, and vascular markers. Clin Imaging 38:792–796

    Article  PubMed  Google Scholar 

  52. Kershenovich A, Macias OM, Syed F, Davenport C, Moore GJ, Lock JH (2016) Conus medullaris level in vertebral columns with lumbosacral transitional vertebra. Neurosurgery 78:62–70

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Yang.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Dr. Haitao Yang.

Conflict of interest

The authors declare no competing interests.

Statistics and biometry

The scientific guarantor of this publication has knowledge of statistics and we have consulted the specific statistical expertise for the investigation.

Informed consent

Written informed consent was obtained from all subjects in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• Retrospective

• Case-control study

• Observational

• Performed at one institution

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Du, L., Liu, X. et al. Quantitative measurements at the lumbosacral junction are more reliable parameters for identifying and numbering lumbosacral transitional vertebrae. Eur Radiol 32, 5650–5658 (2022). https://doi.org/10.1007/s00330-022-08613-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-022-08613-w

Keywords

Navigation