Skip to main content
Log in

Injury patterns of medial patellofemoral ligament after acute lateral patellar dislocation in children: Correlation analysis with anatomical variants and articular cartilage lesion of the patella

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To assess the relationship between injury patterns of medial patellofemoral ligament (MPFL) and anatomical variants and patellar cartilage lesions after acute lateral patellar dislocation (LPD) in children.

Methods

MR images were obtained in 140 children with acute LPD. Images were acquired and evaluated using standardised protocols.

Results

Fifty-eight cases of partial MPFL tear and 75 cases of complete MPFL tear were identified. Injuries occurred at an isolated patellar insertion (PAT) in 52 cases, an isolated femoral attachment (FEM) in 42 cases and an isolated mid-substance (MID) in five cases. More than one site of injury was identified in 34 cases. Compared with Wiberg patellar type C, Wiberg patellar type B predisposed to complete MPFL tear (P = 0.042). No correlations were identified between injury patterns of MPFL and trochlear dysplasia, patellar height and tibial tuberosity-trochlear groove distance (P > 0.05). Compared with partial MPFL tear, complete MPFL tear predisposed to Grade-IV and Grade-V patellar chondral lesion (P = 0.02). There were no correlations between incidence of patellar cartilage lesion and injury locational-subgroups of MPFL (P = 0.543).

Conclusions

MPFL is most easily injured at the PAT in children. Wiberg patellar type B predisposes to complete MPFL tear. Complete MPFL tear predisposes to a higher grade of patellar chondral lesion.

Key Points

• MPFL is most easily injured at its patellar insertion in children.

• Wiberg patellar type B predisposes to complete MPFL tear.

• No correlations between injury patterns of MPFL and other three anatomical variants.

• Complete MPFL tear predisposes to higher grade patellar chondral lesion.

• No correlations between injury locations of MPFL and patellar cartilage lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luhmann SJ (2003) Acute traumatic knee effusions in children and adolescents. J Pediatr Orthop 23:199–202

    PubMed  Google Scholar 

  2. Abbasi D, May MM, Wall EJ, Chan G, Parikh SN (2012) MRI findings in adolescent patients with acute traumatic knee hemarthrosis. J Pediatr Orthop 32:760–764

    Article  PubMed  Google Scholar 

  3. Zhang GY, Zheng L, Ding HY, Li EM, Sun BS, Shi H (2015) Evaluation of medial patellofemoral ligament tears after acute lateral patellar dislocation: comparison of high-frequency ultrasound and MR. Eur Radiol 25:274–281

    Article  PubMed  Google Scholar 

  4. Zheng L, Shi H, Feng Y, Sun BS, Ding HY, Zhang GY (2015) Injury patterns of medial patellofemoral ligament and correlation analysis with articular cartilage lesions of the lateral femoral condyle after acute lateral patellar dislocation in children and adolescents: an MRI evaluation. Injury 46:1137–1144

    Article  PubMed  Google Scholar 

  5. Kepler CK, Bogner EA, Hammoud S, Malcolmson G, Potter HG, Green DW (2011) Zone of injury of the medial patellofemoral ligament after acute patellar dislocation in children and adolescents. Am J Sports Med 39:1444–1449

    Article  PubMed  Google Scholar 

  6. Zaidi A, Babyn P, Astori I, White L, Doria A, Cole W (2006) MRI of traumatic patellar dislocation in children. Pediatr Radiol 36:1163–1170

    Article  PubMed  Google Scholar 

  7. Felus J, Kowalczyk B (2012) Age-related differences in medial patellofemoral ligament injury patterns in traumatic patellar dislocation: case series of 50 surgically treated children and adolescents. Am J Sports Med 40:2357–2364

    Article  PubMed  Google Scholar 

  8. Felus J, Kowalczyk B, Lejman T (2008) Sonographic evaluation of the injuries after traumatic patellar dislocation in adolescents. J Pediatr Orthop 28:397–402

    Article  PubMed  Google Scholar 

  9. Balcarek P, Walde TA, Frosch S et al (2011) Patellar dislocations in children, adolescents and adults:a comparative MRI study of medial patellofemoral ligament injury patterns and trochlear groove anatomy. Eur J Radiol 79:415–420

    Article  PubMed  Google Scholar 

  10. Putney SA, Smith CS, Neal KM (2012) The location of medial patellofemoral ligament injury in adolescents and children. J Pediatr Orthop 32:241–244

    Article  PubMed  Google Scholar 

  11. Balcarek P, Ammon J, Frosch S et al (2010) Magnetic resonance imaging characteristics of the medial patellofemoral ligament lesion in acute lateral patellar dislocations considering trochlear dysplasia, patella alta, and tibial tuberosity-trochlear groove distance. Arthroscopy 26:926–935

    Article  PubMed  Google Scholar 

  12. Seeley MA, Knesek M, Vanderhave KL (2013) Osteochondral injury after acute patellar dislocation in children and adolescents. J Pediatr Orthop 33:511–518

    Article  PubMed  Google Scholar 

  13. Stanitski CL, Paletta GA Jr (1998) Articular cartilage injury with acute patellar dislocation in adolescents. Arthroscopic and radiographic correlation. Am J Sports Med 26:52–55

    CAS  PubMed  Google Scholar 

  14. Nietosvaara Y, Aalto K, Kallio PE (1994) Acute patellar dislocation in children: incidence and associated osteochondral fractures. J Pediatr Orthop 14:513–515

    Article  CAS  PubMed  Google Scholar 

  15. Nietosvaara Y, Paukku R, Palmu S, Donell ST (2009) Acute patellar dislocation in children and adolescents. Surgical technique. J Bone Joint Surg Am 91(Suppl 2):139–145

    Article  PubMed  Google Scholar 

  16. Oeppen RS, Connolly SA, Bencardino JT, Jaramillo D (2004) Acute injury of the articular cartilage and subchondral bone: a common but unrecognized lesion in the immature knee. AJR Am J Roentgenol 182:111–117

    Article  PubMed  Google Scholar 

  17. Zhang GY, Zheng L, Shi H, Qu SH, Ding HY (2013) Sonography on injury of the medial patellofemoral ligament after acute traumatic lateral patellar dislocation:injury patterns and correlation analysis with injury of articular cartilage of the inferomedial patella. Injury 44:1892–1898

    Article  PubMed  Google Scholar 

  18. Elias DA, White LM, Fithian DC (2002) Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 225:736–743

    Article  PubMed  Google Scholar 

  19. Vollnberg B, Koehlitz T, Jung T et al (2012) Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur Radiol 22:2347–2356

    Article  PubMed  Google Scholar 

  20. Nomura E, Inoue M, Kurimura M (2003) Chondral and osteochondral injuries associated with acute patellar dislocation. Arthroscopy 19:717–721

    Article  PubMed  Google Scholar 

  21. Sillanpää PJ, Peltola E, Mattila VM, Kiuru M, Visuri T, Pihlajamäki H (2009) Femoral avulsion of the medial patellofemoral ligament after primary traumatic patellar dislocation predicts subsequent instability in men: a mean 7-year nonoperative follow-up study. Am J Sports Med 37:1513–1521

    Article  PubMed  Google Scholar 

  22. Stefancin JJ, Parker RD (2007) First-time traumatic patellar dislocation: a systematic review. Clin Orthop Relat Res 455:93–101

    Article  PubMed  Google Scholar 

  23. Kang HJ, Wang F, Chen BC, Zhang YZ, Ma L (2013) Non-surgical treatment for acute patellar dislocation with special emphasis on the MPFL injury patterns. Knee Surg Sports Traumatol Arthrosc 21:325–331

    Article  PubMed  Google Scholar 

  24. Sillanpää PJ, Salonen E, Pihlajamäki H, Mäenpää HM (2014) Medial patellofemoral ligament avulsion injury at the patella: classification and clinical outcome. Knee Surg Sports Traumatol Arthrosc 22:2414–2418

    Article  PubMed  Google Scholar 

  25. Lewallen LW, McIntosh AL, Dahm DL (2013) Predictors of recurrent instability after acute patellofemoral dislocation in pediatric and adolescent patients. Am J Sports Med 41:575–581

    Article  PubMed  Google Scholar 

  26. Lewallen L, McIntosh A, Dahm D (2015) First-time patellofemoral dislocation: risk factors for recurrent instability. J Knee Surg 28:303–310

    Article  PubMed  Google Scholar 

  27. Sillanpää PJ, Mäenpää HM (2012) First-time patellar dislocation: surgery or conservative treatment? Sports Med Arthrosc 20:128–135

    Article  PubMed  Google Scholar 

  28. Hopper GP, Leach WJ, Rooney BP, Walker CR, Blyth MJ (2014) Does degree of trochlear dysplasia and position of femoral tunnel influence outcome after medial patellofemoral ligament reconstruction? Am J Sports Med 42:716–722

    Article  PubMed  Google Scholar 

  29. Matsushita T, Kuroda R, Oka S, Matsumoto T, Takayama K, Kurosaka M (2014) Clinical outcomes of medial patellofemoral ligament reconstruction in patients with an increased tibial tuberosity-trochlear groove distance. Knee Surg Sports Traumatol Arthrosc 22:2438–2444

    Article  PubMed  Google Scholar 

  30. Panni AS, Cerciello S, Maffulli N, Di Cesare M, Servien E, Neyret P (2011) Patellar shape can be a predisposing factor in patellar instability. Knee Surg Sports Traumatol Arthrosc 19:663–670

    Article  PubMed  Google Scholar 

  31. Ho-Fung VM, Jaramillo D (2013) Cartilage imaging in children: current indications, magnetic resonance imaging techniques, and imaging findings. Radiol Clin North Am 51:689–702

    Article  PubMed  Google Scholar 

  32. Lippacher S, Dejour D, Elsharkawi M et al (2012) Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med 40:837–843

    Article  PubMed  Google Scholar 

  33. Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J (2006) The tibial tuberosity-trochlear groove distance: a comparative study between CT and MRI scanning. Knee 13:26–31

    Article  PubMed  Google Scholar 

  34. Meyers AB, Laor T, Sharafinski M, Zbojniewicz AM (2016) Imaging assessment of patellar instability and its treatment in children and adolescents. Pediatr Radiol 46:618–636

    Article  PubMed  Google Scholar 

  35. Monk AP, Doll HA, Gibbons CL et al (2011) The patho-anatomy of patellofemoral subluxation. J Bone Joint Surg Br 93:1341–1347

    Article  CAS  PubMed  Google Scholar 

  36. Conlan T, Garth WP Jr, Lemons JE (1993) Evaluation of the medial soft-tissue restraints of the extensor mechanism of the knee. J Bone Joint Surg Am 75:682–693

    Article  CAS  PubMed  Google Scholar 

  37. Desio SM, Burks RT, Bachus KN (1998) Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med 26:59–65

    CAS  PubMed  Google Scholar 

  38. Brown GD, Ahmad CS (2008) Combined medial patellofemoral ligament and patellotibial ligament reconstruction in skeletally immature patients. J Knee Surg 21:328–332

    Article  PubMed  Google Scholar 

  39. Philippot R, Boyer B, Testa R, Farizon F, Moyen B (2012) The role of the medial ligamentous structures on patellar tracking during knee flexion. Knee Surg Sports Traumatol Arthrosc 20:331–336

    Article  CAS  PubMed  Google Scholar 

  40. Hautamaa PV, Fithian DC, Kaufman KR, Daniel DM, Pohlmeyer AM (1998) Medial soft tissue restraints in lateral patellar instability and repair. Clin Orthop Relat Res 349:174–182

    Article  Google Scholar 

  41. Giordano M, Falciglia F, Aulisa AG, Guzzanti V (2012) Patellar dislocation in skeletally immature patients: semitendinosous and gracilis augmentation for combined medial patellofemoral and medial patellotibial ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 20:1594–1598

    Article  PubMed  Google Scholar 

  42. Camanho GL, Viegas Ade C, Bitar AC, Demange MK, Hernandez AJ (2009) Conservative versus surgical treatment for repair of the medial patellofemoral ligament in acute dislocations of the patella. Arthroscopy 25:620–625

    Article  PubMed  Google Scholar 

  43. Petri M, Liodakis E, Hofmeister M et al (2013) Operative vs conservative treatment of traumatic patellar dislocation: results of a prospective randomized controlled clinical trial. Arch Orthop Trauma Surg 133:209–213

    Article  CAS  PubMed  Google Scholar 

  44. Buckens CF, Salis DB (2010) Reconstruction of the medial patellofemoral ligament for treatment of patellofemoral instability. A systematic review. Am J Sports Med 38:181–188

    Article  PubMed  Google Scholar 

  45. Ogden J (2000) Skeletal injury in the child, 3rd edn. Springer-Verlag, New York

    Google Scholar 

  46. Weber-Spickschen TS, Spang J, Kohn L, Imhoff AB, Schottle PB (2011) The relationship between trochlear dysplasia and medial patellofemoral ligament rupture location after patellar dislocation: an MRI evaluation. Knee 18:185–188

    Article  CAS  PubMed  Google Scholar 

  47. Köhlitz T, Scheffler S, Jung T et al (2013) Prevalence and patterns of anatomical risk factors in patients after patellar dislocation: a case control study using MRI. Eur Radiol 23:1067–1074

    Article  PubMed  Google Scholar 

  48. Petri M, von Falck C, Broese M et al (2013) Influence of rupture patterns of the medial patellofemoral ligament (MPFL) on the outcome after operative treatment of traumatic patellar dislocation. Knee Surg Sports Traumatol Arthrosc 21:683–689

    Article  CAS  PubMed  Google Scholar 

  49. Caplan N, Lees D, Newby M et al (2014) Is tibial tuberosity-trochlear groove distance an appropriate measure for the identification of knees with patellar instability? Knee Surg Sports Traumatol Arthrosc 22:2377–2381

    Article  CAS  PubMed  Google Scholar 

  50. Dickens AJ, Morrell NT, Doering A, Tandberg D, Treme G (2014) Tibial tubercle-trochlear groove distance: defining normal in a pediatric population. J Bone Joint Surg Am 96:318–324

    Article  PubMed  Google Scholar 

  51. Balcarek P, Jung K, Frosch KH, Stürmer KM (2011) Value of the tibial tuberosity-trochlear groove distance in patellar instability in the young athlete. Am J Sports Med 39:1756–1761

    Article  PubMed  Google Scholar 

  52. Pennock AT, Alam M, Bastrom T (2014) Variation in tibial tubercle-trochlear groove measurement as a function of age, sex, size, and patellar instability. Am J Sports Med 42:389–393

    Article  PubMed  Google Scholar 

  53. Luhmann SJ, Schoenecker PL, Dobbs MB, Gordon JE (2007) Arthroscopic findings at the time of patellar realignment surgery in adolescents. J Pediatr Orthop 27:493–498

    Article  PubMed  Google Scholar 

  54. Sanders TG, Paruchuri NB, Zlatkin MB (2006) MRI of osteochondral defects of the lateral femoral condyle: incidence and pattern of injury after transient lateral dislocation of the patella. AJR Am J Roentgenol 187:1332–1337

    Article  PubMed  Google Scholar 

  55. Harris JD, Brophy RH, Jia G et al (2012) Sensitivity of magnetic resonance imaging for detection of patellofemoral articular cartilage defects. Arthroscopy 11:1728–1737

    Article  Google Scholar 

  56. Van Dyck P, Vanhevel F, Vanhoenacker FM et al (2015) Morphological MR imaging of the articular cartilage of the knee at 3 T-comparison of standard and novel 3D sequences. Insight Imag 6:285–293

    Article  Google Scholar 

  57. von Engelhardt LV, Raddatz M, Bouillon B et al (2010) How reliable is MRI in diagnosing cartilaginous lesions in patients with first and recurrent lateral patellar dislocations? BMC Musculoskelet Disord 11:149

    Article  Google Scholar 

  58. Nomura E, Horiuchi Y, Inoue M (2002) Correlation of MR imaging findings and open exploration of medial patellofemoral ligament injuries in acute patellar dislocations. Knee 9:139–143

    Article  CAS  PubMed  Google Scholar 

  59. Balcarek P, Walde TA, Frosch S, Schüttrumpf JP, Wachowski MM, Stürmer KM (2012) MRI but not arthroscopy accurately diagnoses femoral MPFL injury in first-time patellar dislocations. Knee Surg Sports Traumatol Arthrosc 20:1575–1580

    Article  PubMed  Google Scholar 

  60. Pfirrmann CW, Zanetti M, Romero J, Hodler J (2000) Femoral trochlear dysplasia: MR findings. Radiology 216:858–864

    Article  CAS  PubMed  Google Scholar 

  61. Chhabra A, Subhawong TK, Carrino JA (2011) A systematised MRI approach to evaluating the patellofemoral joint. Skeletal Radiol 40:375–387

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Hong-yu Ding. The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding.

No complex statistical methods were necessary for this paper. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. No study subjects or cohorts have been previously reported before. Methodology: prospective, cross-sectional study, performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-yu Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Gy., Zheng, L., Shi, H. et al. Injury patterns of medial patellofemoral ligament after acute lateral patellar dislocation in children: Correlation analysis with anatomical variants and articular cartilage lesion of the patella. Eur Radiol 27, 1322–1330 (2017). https://doi.org/10.1007/s00330-016-4473-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4473-5

Keywords

Navigation