Skip to main content
Log in

Patellar shape can be a predisposing factor in patellar instability

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Predisposing factors to objective patellar instability include trochlear dysplasia, patella alta, patellar tilt and elevated tibial tuberosity–femoral groove distance. The shape of the patella is classically not considered a predisposing factor. Anomalies of dynamic and static factors, including excessive patellar height, tibial tubercle lateralisation or trochlear dysplasia, may influence the development of the patella.

Methods

One hundred and five patients (140 knees) with objective patellar instability were retrospectively reviewed to identify a possible association between the above-mentioned predisposing factors and patellar shape. All patients were evaluated with static and dynamic CT scans, and plain lateral and antero-posterior radiographs, and skyline patellar views.

Results

Evidence of a significant association emerged between patellar shape and patellar tilt in static (r s = 0.20, P = 0.019) or dynamic conditions (r s = 0.18, P = 0.031) and a significant association between Wiberg patellar shape type C and trochlear dysplasia grade 3 (χ2 = 4.5, P = 0.035). Also, we found a significant association between trochlear dysplasia stage 3 and tibial tuberosity–trochlear groove (TT–TG) and patellar tilt relaxed (P < 0.01 and P < 0.05, respectively). There is an association between patellar shape and patellar tilt.

Conclusion

Increased lateral stresses may produce a Wiberg type C patella, with a hypoplastic medial facet and a more developed lateral facet. Unbalance between dynamic medial and lateral stabilisers may act as an additional factor. A rehabilitation program aiming to reduce this unbalance may decrease the incidence of type C patella in young patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP (2003) Anatomy and biomechanics of the medial patello femoral. Knee 10:215–220

    Article  PubMed  CAS  Google Scholar 

  2. Beaconsfield T, Maffulli N, Chan KM (1998) Patello-femoral disorders: an imaging approach. In: Chan KM et al (eds) Controversies in orthopedic sports medicine. Williams and Wilkins Asia-Pacific Ltd., Hong Kong, pp 256–271

    Google Scholar 

  3. Beaconsfield T, Pintore E, Maffulli N, Petri GJ (1994) Radiological measurements in patellofemoral disorders. A review. Clin Orthop Relat Res 308:18–28

    PubMed  Google Scholar 

  4. Bernageau J, Goutallier D (1984) Examen radiologique de l’articulation fémoro-patellaire. Actualités Rhumatologiques Expansion Scientifique Française, Paris, pp 105–110

    Google Scholar 

  5. Biedert RM, Bachmann M (2009) Anterior-posterior trochlear measurements of normal and dysplastic trochlea by axial magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 17:1225–1230

    Article  PubMed  Google Scholar 

  6. Bousquet G, Girardin P (1991) Le genou dynamique ou la stabilité active du genou. In: Les laxités chroniques du genou Medsi/McGraw-Hill, pp 54–96

  7. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H (1982) Patella infera. A propos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot 68:317–325

    PubMed  CAS  Google Scholar 

  8. Conlan T, Garth WP Jr, Lemons JE (1993) Evaluation of the medial soft-tissue restraints of the extensor mechanism of the knee. J Bone Joint Surg Am 75:682–693

    PubMed  CAS  Google Scholar 

  9. DRP Dejour, Lecoulture B (1998) Douleurs et instabilité routulienne. Essai de classification. Méd Et Hyg 56:1466–1471

    Google Scholar 

  10. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    Article  PubMed  CAS  Google Scholar 

  11. Desio SM, Burks RT, Bachus KN (1998) Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med 26:59–65

    PubMed  CAS  Google Scholar 

  12. Dye SF (1987) An evolutionary perspective of the knee. J Bone Joint Surg Am 69:976–983

    PubMed  CAS  Google Scholar 

  13. Feller JA, Amis AA, Andrish JT, Arendt EA, Erasmus PJ, Powers CM (2007) Surgical biomechanics of the patellofemoral joint. Arthroscopy 23:542–553

    Article  PubMed  Google Scholar 

  14. Fox TA (1975) Dysplasia of the quadriceps mechanism: hypoplasia of the vastus medialis muscle as related to the hypermobile patella syndrome. Surg Clin North Am 55:199–226

    PubMed  CAS  Google Scholar 

  15. Fucentese SF, von Roll A, Koch PP, Epari DR, Fuchs B, Schottle PB (2006) The patella morphology in trochlear dysplasia: a comparative MRI study. Knee 13:145–150

    Article  PubMed  Google Scholar 

  16. Fulkerson JP, Gossling HR (1980) Anatomy of the knee joint lateral retinaculum. Clin Orthop Relat Res 153:183–188

    PubMed  Google Scholar 

  17. Fulkerson JP (2004) Normal anatomy 1–23. In: Patellofemoral joint. Lippincott Williams and Wilkins

  18. Jan MH, Lin DH, Lin JJ, Lin CH, Cheng CK, Lin YF (2009) Differences in sonographic characteristics of the vastus medialis obliquus between patients with patellofemoral pain syndrome and healthy adults. Am J Sports Med 37:1743–1749

    Article  PubMed  Google Scholar 

  19. Kaplan EB (1962) Some aspects of functional anatomy of the human knee joint. Clin Orthop Relat Res 23:18–29

    CAS  Google Scholar 

  20. Maldague B, Malghem J (1985) Significance of the radiograph of the knee profile in the detection of patellar instability. Preliminary report. Rev Chir Orthop Reparatrice Appar Mot 71(Suppl 2):5–13

    PubMed  Google Scholar 

  21. Mariani PP, Caruso I (1979) An electromyographic investigation of subluxation of the patella. J Bone Joint Surg Br 61-B:169–171

    PubMed  CAS  Google Scholar 

  22. Nove-Josserand L, Dejour D (1995) Quadriceps dysplasia and patellar tilt in objective patellar instability. Rev Chir Orthop Reparatrice Appar Mot 81:497–504

    PubMed  CAS  Google Scholar 

  23. Servien E, Ait Si Selmi T, Neyret P (2003) Study of the patellar apex in objective patellar dislocation. Rev Chir Orthop Reparatrice Appar Mot 89:605–612

    PubMed  CAS  Google Scholar 

  24. Schutzer SF, Ramsby G, Fulkerson JP (1986) Evaluation of patellar pain using computerized tomography. Clin Orthop Relat Res 204:286–293

    PubMed  Google Scholar 

  25. Smith TO, Hunt NJ, Donell ST (2008) The reliability and validity of the Q-angle: a systematic review. Knee Surg Sports Traumatol Arthrosc 16:1068–1079

    Article  PubMed  Google Scholar 

  26. Utheza G, Puget J (1977) Patellar chondromalacia due to lack of rotatory congruence. Rev Chir Orthop Reparatrice Appar Mot 63(Suppl 2):62–68

    PubMed  Google Scholar 

  27. Walch G, Dejour H (1989) Radiology in femoro-patellar pathology. Acta Orthop Belg 55:371–380

    PubMed  CAS  Google Scholar 

  28. Wiberg G (1941) Roentgenographic and anatomic studies on the patellofemoral joint. Acta Orthop Scand 12:319–409

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Maffulli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panni, A.S., Cerciello, S., Maffulli, N. et al. Patellar shape can be a predisposing factor in patellar instability. Knee Surg Sports Traumatol Arthrosc 19, 663–670 (2011). https://doi.org/10.1007/s00167-010-1329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-010-1329-4

Keywords

Navigation