Skip to main content
Log in

Is tibial tuberosity–trochlear groove distance an appropriate measure for the identification of knees with patellar instability?

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Tibial tuberosity–trochlear groove distance (TT–TG) has been regarded as a useful tool for establishing therapeutic choices for patellar instability. Recently, it has been shown that TT–TG negatively correlated with the quadriceps angle, suggesting that if used individually, neither provide a valid measure of instability. This study aimed to compare TT–TG distance between both knees in patients with unilateral instability to assess whether this measurement is a decisive element in the management decisions for patellar instability.

Methods

Sixty-two patients (18 male and 44 female), reporting to a specialist patella clinic for recurrent unilateral patellar instability, were included in the study. Patients underwent bilateral long leg computed tomography scan to determine TT–TG distance in both knees. Tibial TT–TG in symptomatic and asymptomatic knees in the same individual was compared statistically.

Results

Mean TT–TG distance in the symptomatic knee was 16.9 (±4.9) mm, compared to 15.6 (±5.6) mm in the asymptomatic knee. Tibial TT–TG was not significantly different between stable and unstable knees (n.s.).

Conclusions

The lack of difference in TT–TG distance between stable and unstable knees suggests that TT–TG distance alone may not be a decisive element in establishing therapeutic choices for patellar instability. It should, therefore, be interpreted with caution during clinical evaluations.

Level of evidence

II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aglietti P, Insall JN, Cerulli G (1983) Patellar pain and incongruence. I: measurements of incongruence. Clin Orthop Relat Res 176:217–224

    PubMed  Google Scholar 

  2. Balcarek P, Jung K, Ammon J, Walde TA, Frosch S, Schuttrumpf JP, Sturmer KM, Frosch KH (2010) Anatomy of lateral patellar instability: trochlear dysplasia and tibial tubercle-trochlear groove distance is more pronounced in women who dislocate the patella. Am J Sports Med 38(11):2320–2327

    Article  PubMed  Google Scholar 

  3. Balcarek P, Jung K, Frosch KH, Sturmer KM (2011) Value of the tibial tuberosity–trochlear groove distance in patellar instability in the young athlete. Am J Sports Med 39(8):1756–1761

    Article  PubMed  Google Scholar 

  4. Barnett AJ, Gardner RO, Lankester BJ, Wakeley CJ, Eldridge JD (2007) Magnetic resonance imaging of the patella: a comparison of the morphology of the patella in normal and dysplastic knees. J Bone Joint Surg Br 89(6):761–765

    Article  PubMed  CAS  Google Scholar 

  5. Carrillon Y, Abidi H, Dejour D, Fantino O, Moyen B, Tran-Minh VA (2000) Patellar instability: assessment on MR images by measuring the lateral trochlear inclination-initial experience. Radiology 216(2):582–585

    Article  PubMed  CAS  Google Scholar 

  6. Cooney AD, Kazi Z, Caplan N, Newby M, St Clair Gibson A, Kader DF (2012) The relationship between quadriceps angle and tibial tuberosity–trochlear groove distance in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc 20(12):2399–2404

    Article  PubMed  CAS  Google Scholar 

  7. Dandy DJ (1996) Chronic patellofemoral instability. J Bone Joint Surg Br 78(2):328–335

    PubMed  CAS  Google Scholar 

  8. Dejour D, Le Coultre B (2007) Osteotomies in patello-femoral instabilities. Sports Med Arthrosc 15(1):39–46

    Article  PubMed  Google Scholar 

  9. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2(1):19–26

    Article  PubMed  CAS  Google Scholar 

  10. Diederichs G, Issever AS, Scheffler S (2010) MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics 30(4):961–981

    Article  PubMed  Google Scholar 

  11. Drexler M, Dwyer T, Marmor M, Reischl N, Attar F, Cameron J (2013) Total knee arthroplasty in patients with excessive external tibial torsion >45° and patella instability–surgical technique and follow up. J Arthroplasty 28(4):614–619

    Article  PubMed  Google Scholar 

  12. Elias DA, White LM (2004) Imaging of patellofemoral disorders. Clin Radiol 59(7):543–557

    Article  PubMed  CAS  Google Scholar 

  13. Elias DA, White LM, Fithian DC (2002) Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 225(3):736–743

    Article  PubMed  Google Scholar 

  14. Fithian DC, Paxton EW, Stone ML, Silva P, Davis DK, Elias DA, White LM (2004) Epidemiology and natural history of acute patellar dislocation. Am J Sports Med 32(5):1114–1121

    Article  PubMed  Google Scholar 

  15. France L, Nester C (2001) Effect of errors in the identification of anatomical landmarks on the accuracy of Q angle values. Clin Biomech 16(8):710–713

    Article  CAS  Google Scholar 

  16. Goutallier D, Bernageau J, Lecudonnec B (1978) The measurement of the tibial tuberosity. Patella groove distanced technique and results. Rev Chir Orthop Reparatrice Appar Mot 64(5):423–428

    PubMed  CAS  Google Scholar 

  17. Kita K, Horibe S, Toritsuka Y, Nakamura N, Tanaka Y, Yonetani Y, Mae T, Nakata K, Yoshikawa H, Shino K (2012) Effects of medial patellofemoral ligament reconstruction on patellar tracking. Knee Surg Sports Traumatol Arthrosc 20(5):829–837

    Article  PubMed  Google Scholar 

  18. Lustig S, Servien E, Ait Si Selmi T, Neyret P (2007) Factors affecting reliability of TT–TG measurements before and after medialization: a CT scan study. Rev Chir Orthop 92:429–436

    Google Scholar 

  19. McNally EG, Ostlere SJ, Pal C, Phillips A, Reid H, Dodd C (2000) Assessment of patellar maltracking using combined static and dynamic MRI. Eur Radiol 10(7):1051–1055

    Article  PubMed  CAS  Google Scholar 

  20. Monk AP, Doll HA, Gibbons CL, Ostlere S, Beard DJ, Gill HS, Murray DW (2011) The patho-anatomy of patellofemoral subluxation. J Bone Joint Surg Br 93(10):1341–1347

    Article  PubMed  CAS  Google Scholar 

  21. Nikku R, Nietosvaara Y, Aalto K, Kallio PE (2005) Operative treatment of primary patellar dislocation does not improve medium-term outcome: A 7-year follow-up report and risk analysis of 127 randomized patients. Acta Orthop 76(5):699–704

    Article  PubMed  Google Scholar 

  22. Pfirrmann CW, Zanetti M, Romero J, Hodler J (2000) Femoral trochlear dysplasia: MR findings. Radiology 216(3):858–864

    Article  PubMed  CAS  Google Scholar 

  23. Philippot R, Boyer B, Testa R, Farizon F, Moyen B (2012) The role of the medial ligamentous structures on patellar tracking during knee flexion. Knee Surg Sports Traumatol Arthrosc 20(2):331–336

    Article  PubMed  CAS  Google Scholar 

  24. Seitlinger G, Scheurecker G, Hogler R, Labey L, Innocenti B, Hofmann S (2012) Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 40 (5):1119–1125

    Google Scholar 

  25. Shen HC, Chao KH, Huang GS, Pan RY, Lee CH (2007) Combined proximal and distal realignment procedures to treat the habitual dislocation of the patella in adults. Am J Sports Med 35(12):2101–2108

    Article  PubMed  Google Scholar 

  26. Sillanpaa P, Mattila VM, Visuri T, Maenpaa H, Pihlajamaki H (2008) Ligament reconstruction versus distal realignment for patellar dislocation. Clin Orthop Relat Res 466(6):1475–1484

    Article  PubMed  PubMed Central  Google Scholar 

  27. Smith TO, Hunt NJ, Donell ST (2008) The reliability and validity of the Q-angle: a systematic review. Knee Surg Sports Traumatol Arthrosc 16(12):1068–1079

    Article  PubMed  Google Scholar 

  28. Turner MS (1994) The association between tibial torsion and knee joint pathology. Clin Orthop Relat Res 302:47–51

    PubMed  Google Scholar 

  29. van Huyssteen AL, Hendrix MR, Barnett AJ, Wakeley CJ, Eldridge JD (2006) Cartilage-bone mismatch in the dysplastic trochlea. An MRI study. J Bone Joint Surg Br 88(5):688–691

    Article  PubMed  Google Scholar 

  30. Wilson T, Kitsell F (2002) Is the Q-angle absolute or a variable measure? Measurement of the Q-angle over one minute in healthy subjects. Physiotherapy 88(5):296–302

    Article  Google Scholar 

Download references

Conflict of interest

No funding was received for the conduct of this study, and the authors declare that they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Caplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caplan, N., Lees, D., Newby, M. et al. Is tibial tuberosity–trochlear groove distance an appropriate measure for the identification of knees with patellar instability?. Knee Surg Sports Traumatol Arthrosc 22, 2377–2381 (2014). https://doi.org/10.1007/s00167-014-2954-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-2954-0

Keywords

Navigation