Skip to main content

Advertisement

Log in

Impact of ocean acidification on thermal tolerance and acid–base regulation of Mytilus edulis from the White Sea

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Ocean warming and acidification are two important environmental drivers affecting marine organisms. Organisms living at high latitudes might be especially threatened in near future, as current environmental changes are larger and occur faster. Therefore, we investigated the effect of hypercapnia on thermal tolerance and physiological performance of sub-Arctic Mytilus edulis from the White Sea. Mussels were exposed (2 weeks) to 390 µatm (control) and 1120 µatm CO2 (year 2100) before respiration rate (MO2), anaerobic metabolite (succinate) level, haemolymph acid–base status and intracellular pH (pHi) were determined during acute warming (10–28 °C, 3 °C over night). In normocapnic mussels, warming induced MO2 to rise exponentially until it levelled off beyond a breakpoint temperature of 20.5 °C. Concurrently, haemolymph PCO2 rose significantly > 19 °C followed by a decrease in PO2 indicating the pejus temperature (TP, onset of thermal limitation). Succinate started to accumulate at 28 °C under normocapnia defining the critical temperature (TC). pHi was maintained during warming until it dropped at 28 °C, in line with the concomitant transition to anaerobiosis. At acclimation temperature, CO2 had only a minor impact. During warming, MO2 was stimulated by CO2 resulting in an elevated breakpoint of 25.8 °C. Nevertheless, alterations in haemolymph gases (> 16 °C) and the concomitant changes of pHi and succinate level (25 °C) occurred at lower temperature under hypercapnia versus normocapnia indicating a downward shift of both thermal limits TP and TC by CO2. Compared to temperate conspecifics, sub-Arctic mussels showed an enhanced thermal sensitivity, exacerbated further by hypercapnia, indicating their potential vulnerability to environmental changes projected for 2100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bayne BL, Scullard C (1977) An apparent specific dynamic action in Mytilus edulis L. J Mar Biol Assoc UK 57:371–378

    Article  Google Scholar 

  • Beesley A, Lowe DM, Pascoe CK, Widdicombe S (2008) Effects of CO2-induced seawater acidification on the health of Mytilus edulis. Clim Res 37:215–225. https://doi.org/10.3354/cr00765

    Article  Google Scholar 

  • Berger VJ, Dahle S, Galaktionov K, Kosobokova X, Naumov A, Rat’kova T, Savinov V, Savinova T (2001) White sea ecology and environment. Derzavets Publisher, St-Petersburg

    Google Scholar 

  • Booth CH, McDonald DG, Walsh PJ (1984) Acid-base balance in the sea mussel Mytilus edulis I. Effects of hypoxia and air-exposure on hemolymph acid-base status Mar. Biol Lett 5:347–358

    CAS  Google Scholar 

  • Butler PJ, Day N (1993) The relationship between intracellular pH and swimming performance of brown trout exposed to neutral and sublethal pH. J Exp Biol 176:271–284

    Google Scholar 

  • Calosi P, Turner LM, Hawkins M, Bertolini C, Nightingale G, Truebano M, Spicer JI (2013) Multiple physiological responses to multiple environmental challenges: an individual approach. Integr Comp Biol 53:660–670

    Article  CAS  PubMed  Google Scholar 

  • Careau V, Thomas D, Humphries MM, Reale D (2008) Energy metabolism and animal personality. Oikos 117:641–653

    Article  Google Scholar 

  • Chapple JP, Smerdon GR, Berry R, Hawkins AJ (1998) Seasonal changes in stress-70 protein levels reflect thermal tolerance in the marine bivalve Mytilus edulis L. J Exp Mar Biol Ecol 229:53–68

    Article  CAS  Google Scholar 

  • Dale AW, Prego R (2003) Tidal and seasonal nutrient dynamics and budget of the Chupa Estuary White Sea (Russia). Estuar Coast Shelf S 56:377–389. https://doi.org/10.1016/S0272-7714(02)00190-7

    Article  CAS  Google Scholar 

  • Davenport J, Smith RJJW, Packer M (2000) Mussels Mytilus edulis: significant consumers and destroyers of mesozooplankton. Mar Ecol Prog Ser 198:131–137

    Article  Google Scholar 

  • Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB (2008) Climate change tightens a metabolic constraint on marine habitats. Science 348:1132–1135. https://doi.org/10.1126/scienceaaa1605

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • Dissanayake A, Ishimatsu A (2011) Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES J Mar Sci 68:1147–1154. https://doi.org/10.1093/icesjms/fsq188

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Ellis RP (2013) The impact of ocean acidification increased seawater temperature and a bacterial challenge on the immune response and physiology of the blue mussel Mytilus edulis. Dissertation, University of Plymouth

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Findlay HS, Burrows MT, Kendall MA, Spicer JI, Widdicombe S (2010) Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge? Ecology 91:2931–2940

    Article  PubMed  Google Scholar 

  • Frederich M, Pörtner HO (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab Maja squinado. Am J Physiol Regul Integr Comp Physiol 279:R1531–R1538

    Article  CAS  PubMed  Google Scholar 

  • Gaffney PM, Diehl WJ (1986) Growth condition and specific dynamic action in the mussel Mytilus edulis recovering from starvation. Mar Biol 93:401–409

    Article  Google Scholar 

  • Gazeau F, Alliouane S, Bock C, Bramanti L, López Correa M, Gentile M, Hirse T, Pörtner HO, Ziveri P (2014) Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis). Front Mar Sci 1:62. https://doi.org/10.3389/fmars201400062

    Article  Google Scholar 

  • Gosling E (1992) The mussel Mytilus: ecology physiology genetics and culture. Elsevier, New York

    Google Scholar 

  • Gosling E (2003) Bivalve mollusks: biology, ecology and culture. Fishing News books, Oxford

    Book  Google Scholar 

  • Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674. https://doi.org/10.1111/j1600-0706201019469x

    Article  Google Scholar 

  • Heisler N (1986) Buffering and transmembrane ion transfer processes. In: Heisler N (ed) Acid-base regulation in animals. Elsevier, Amsterdam, pp 3–48

    Google Scholar 

  • Hines A, Oladiran GS, Bingell JP, Stentiford GD, Viant MR (2007) Direct sampling of organisms from the field and knowledge of their phenotype: key recommendations for environmental metabolomics. Environ Sci Technol 41:3375–3381

    Article  CAS  PubMed  Google Scholar 

  • Hummel H, Sommer A, Bogaards RH, Pörtner HO (1997) Variation in genetic traits of the lugworm Arenicola marina: temperature related expression of mitochondrial allozymes? Mar Ecol Prog Ser 159:189–195

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • IPCC (2014) Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  PubMed  Google Scholar 

  • Lannig G, Bock C, Sartoris FJ, Pörtner HO (2004) Oxygen limitation of thermal tolerance in cod Gadus morhua L. studied by magnetic resonance imaging and on-line venous oxygen monitoring. Am J Physiol Regul Integr Comp Physiol 287:R902–R910. https://doi.org/10.1152/ajpregu007002003

    Article  CAS  PubMed  Google Scholar 

  • Lannig G, Eilers S, Pörtner HO, Sokolova IM, Bock C (2010) Impact of ocean acidification on energy metabolism of oyster Crassostrea gigas—changes in metabolic pathways and thermal response. Mar Drugs 8:2318–2339. https://doi.org/10.3390/md8082318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 747–846

    Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Melzner F, Bock C, Pörtner HO (2006) Temperature-dependent oxygen extraction from the ventilatory current and the costs of ventilation in the cephalopod Sepia officinalis. J Comp Physiol B 176:607–621

    Article  CAS  PubMed  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    Article  CAS  Google Scholar 

  • Melzner F, Stange P, Trübenbach K, Thomsen J, Casties I, Panknin U, Gorb SN, Gutowska MA (2011) Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 6:e24223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger R, Sartoris F, Langenbuch M, Pörtner HO (2007) Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol 32:144–151. https://doi.org/10.1016/jjtherbio200701010

    Article  Google Scholar 

  • Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118

    Article  Google Scholar 

  • Miles H, Widdicombe S, Spicer JI, Hall-Spencer J (2007) Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar Pollut Bull 54:89–96. https://doi.org/10.1016/jmarpolbul200609021

    Article  CAS  PubMed  Google Scholar 

  • Peck LS, Pörtner HO, Hardewig I (2002) Metabolic demand oxygen supply and critical temperatures in the Antarctic bivalve Laternula elliptica. Physiol Biochem Zool 75:123–133

    Article  PubMed  Google Scholar 

  • Peck LS, Morley SA, Richard J, Clark MS (2014) Acclimation and thermal tolerance in Antarctic marine ectotherms. J Exp Biol 217:16–22. https://doi.org/10.1242/jeb089946

    Article  PubMed  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) CO2SYS DOS program developed for CO2 system calculations. ORNL/CDIAC-105 Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory US Department of Energy, Oak Ridge

    Google Scholar 

  • Pörner HO, Boutilier RG, Tang Y, Toews DP (1990) Determination of intracellular pH and PCO2 after metabolic inhibition by fluoride and nitrilotriacetic acid. Resp Physiol 81:255–274

    Article  Google Scholar 

  • Pörtner HO (2001) Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88:137–146. https://doi.org/10.1007/s001140100216

    Article  PubMed  Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893. https://doi.org/10.1242/jeb037523

    Article  PubMed  Google Scholar 

  • Pörtner HO (2012) Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar Ecol Prog Ser 470:273–290. https://doi.org/10.3354/meps10123

    Article  CAS  Google Scholar 

  • Pörtner HO, Bock C (2000) A contribution of acid-base regulation to metabolic depression in marine ectotherms. In: Heldmaier G, Klingenspor M (eds) Life in the cold. Springer Verlag, Berlin, pp 443–458

    Chapter  Google Scholar 

  • Pörtner HO, Farrell AP, Knust R, Lannig G, Mark FC, Storch D (2009) Adapting to climate change-response. Science 323:876–877

    Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Reeves RB (1972) An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14:219–236

    Article  CAS  PubMed  Google Scholar 

  • Reipschläger A, Pörtner HO (1996) Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus. J Exp Biol 199:1801–1807

    Google Scholar 

  • Ritz C, Baty F, Streibig JS, Gerhard D (2015) Dose-Response analysis using R. PLoS ONE 10:e0146021. https://doi.org/10.1371/journal.pone.0146021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sartoris FJ, Bock C, Pörtner HO (2003) Temperature-dependent pH regulation in eurythermal and stenothermal marine fish: an interspecies comparison using 31P-NMR. J Therm Biol 28:363–371. https://doi.org/10.1016/S0306-4565(03)00012-3

    Article  CAS  Google Scholar 

  • Schalkhausser B, Bock C, Stemmer K, Brey T, Pörtner HO, Lannig G (2012) Impact of ocean acidification on escape performance of the king scallop Pecten maximus from Norway. Mar Biol 160:1995–2006. https://doi.org/10.1007/s00227-012-2057-8

    Article  CAS  Google Scholar 

  • Schiffer M, Harms L, Lucassen M, Mark FC, Pörtner HO, Storch D (2014) Temperature tolerance of different larval stages of the spider crab Hyas araneus exposed to elevated seawater PCO2. Front Zool 11:87. https://doi.org/10.1186/s12983-014-0087-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schlüter L, Johansen SB (1994) Annual variation in condition respiration and remineralisation of Mytilus edulis L in the Sound Denmark. Helgol Meeresunters 48:419–430

    Article  Google Scholar 

  • Schröer M, Wittmann AC, Grüner M, Steeger HU, Bock C, Paul P, Pörtner HO (2009) Oxygen limited thermal tolerance and performance in the lugworm Arenicola marina: a latitudinal comparison. J Exp Mar Biol Ecol 372:22–30

    Article  Google Scholar 

  • Schröer M, Saphörster J, Bock C, Pörtner HO (2011) Oxygen and capacity limited thermal tolerance of the lugworm Arenicola marina: a seasonal comparison. J Exp Mar Biol Ecol 409:300–309

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W. H. Freeman & Co., New York

    Google Scholar 

  • Sokolova IM, Pörtner HO (2003) Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (Littorina saxatilis Gastropoda: Littorinidae) from different latitudes. J Exp Biol 206:195–207. https://doi.org/10.1242/jeb00054

    Article  PubMed  Google Scholar 

  • Sommer AM, Pörtner HO (2002) Metabolic cold adaptation in the lugworm Arenicola marina: comparison of a North Sea and a White Sea population. Mar Ecol Prog Ser 240:171–182

    Article  Google Scholar 

  • Sommer A, Klein B, Pörtner HO (1997) Temperature induced anaerobiosis in two populations of the polychaete worm Arenicola marina (L). J Comp Physiol B 167:25–35

    Article  Google Scholar 

  • Stegen E, Grieshaber MK (2001) Adenosine increases ventilation rate cardiac performance and haemolymph velocity in the American lobster Homarus americanus. J Exp Biol 204:947–957

    CAS  PubMed  Google Scholar 

  • Sukhotin AA, Berger V (2013) Long-term monitoring studies as a powerful tool in marine ecosystem research. Hydrobiologia 706:1–9

    Article  Google Scholar 

  • Sukhotin AA, Pörtner HO (1999) Habitat as a factor involved in the physiological response to environmental anaerobiosis of White Sea Mytilus edulis. Mar Ecol Prog Ser 184:149–160

    Article  CAS  Google Scholar 

  • Sukhotin AA, Pörtner HO (2001) Age-dependence of metabolism in mussels Mytilus edulis (L) from the White Sea. J Exp Biol Ecol 257:53–72

    Article  CAS  Google Scholar 

  • Sukhotin AA, Lajus DL, Lesin PA (2003) Influence of age and size on pumping activity and stress resistance in the marine bivalve Mytilus edulis L. J Exp Mar Biol Ecol 284:129–144

    Article  Google Scholar 

  • Tamayo D, Ibarrola I, Urrutia MB, Navarro E (2011) The physiological basis for inter-individual growth variability in the spat of clams (Ruditapes philippinarum). Aquaculture 321:113–120

    Article  Google Scholar 

  • Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157:2667–2676. https://doi.org/10.1007/s00227-010-1527-0

    Article  Google Scholar 

  • Thomsen J, Gutowska MA, Saphörster J, Heinemann A, Trübenbach K, Fietzke J, Hiebenthal C, Eisenhauer A, Körtzinger A, Wahl M, Melzner F (2010) Calcifying invertebrates succeed in a naturally CO2 enriched coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7:5119–5156. https://doi.org/10.5194/bgd-7-5119-2010

    Article  Google Scholar 

  • Thyrring J, Rysgaard S, Blicher ME, Sejr MK (2015) Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region. Mar Biol 162:235–243. https://doi.org/10.1007/s00227-014-2575-7

    Article  CAS  Google Scholar 

  • Tschischka K, Abele D, Pörtner HO (2000) Mitochondrial oxyconformity and cold adaptation in the polychaete Nereis pelagica and the bivalve Arctica islandica from Baltic and White Sea. J Exp Biol 203:3355–3368

    CAS  PubMed  Google Scholar 

  • Usov N, Kutcheva I, Primakov I, Martynova D (2013) Every species is good in its season: do the shifts in the annual temperature dynamics affect the phenology of the zooplankton species in the White Sea? Hydrobiologia 706:11–33

    Article  Google Scholar 

  • Van Dijk PLM, Tesch C, Hardewig I, Pörtner HO (1999) Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). J Exp Biol 202:3611–3621

    PubMed  Google Scholar 

  • Walsh PJ, McDonald DG, Booth CH (1984) Acid-base balance in the sea mussel Mytilus edulis II Effects of hypoxia and air-exposure on intracellular acid-base status. Mar Biol Lett 5:359–369

    CAS  Google Scholar 

  • Walther K, Sartoris FJ, Bock C, Pörtner HO (2009) Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosciences 6:2207–2215

    Article  CAS  Google Scholar 

  • Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271. https://doi.org/10.3354/meps09185

    Article  CAS  Google Scholar 

  • Wittmann AC, Schröer M, Bock C, Steeger H, Paul RJ, Pörtner HO (2008) Indicators of oxygen-and capacity-limited thermal tolerance in the lugworm Arenicola marina. Clim Res 37:227–240

    Article  Google Scholar 

  • Zittier ZMC, Hirse T, Pörtner HO (2013) The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid-base balance in the spider crab Hyas araneus. Mar Biol 160:2049–2062. https://doi.org/10.1007/s00227-012-2073-8

    Article  CAS  Google Scholar 

  • Zittier ZMC, Bock C, Lannig G, Pörtner HO (2015) Impact of ocean acidification on thermal tolerance and acid-base regulation of Mytilus edulis (L) from the North Sea. J Ex Mar Biol Ecol 473:16–25. https://doi.org/10.1016/jjembe201508001

    Article  CAS  Google Scholar 

  • Zurburg W, Kluytmans JH (1980) Organ specific changes in energy metabolism due to anaerobiosis in the sea mussel Mytilus edulis (L). Comp Biochem Physiol B 67:317–322

    Article  Google Scholar 

Download references

Acknowledgements

This work is a contribution to the European Project on Ocean Acidification (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 211384. EPOCA is endorsed by the International Programmes IMBER, LOICZ and SOLAS. This project was also supported by the Helmholtz Graduate School for Polar and Marine Research (POLMAR) and a Research Programme of RAS “Exploratory Basic Research for Development of the Russian Arctic Zone”, AAAA-A17-117021300219-7. The authors would like to thank Rolf Wittig for NMR support and Stephan Frickenhaus for statistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. C. Zittier.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

The study did not involve any human or vertebrate animal subjects. Therefore, no informed consent was required.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zittier, Z.M.C., Bock, C., Sukhotin, A.A. et al. Impact of ocean acidification on thermal tolerance and acid–base regulation of Mytilus edulis from the White Sea. Polar Biol 41, 2261–2273 (2018). https://doi.org/10.1007/s00300-018-2362-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2362-x

Keywords

Navigation