Skip to main content
Log in

Temperature-dependent oxygen extraction from the ventilatory current and the costs of ventilation in the cephalopod Sepia officinalis

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Earlier work found cuttlefish (Sepia officinalis) ventilatory muscle tissue to progressively switch to an anaerobic mode of energy production at critical temperatures (T c) of 7.0 and 26.8°C. These findings suggested that oxygen availability limits thermal tolerance. The present study was designed to elucidate whether it is the ventilatory apparatus that sets critical temperature thresholds during acute thermal stress. Routine metabolic rate (rmr) rose exponentially between 11 and 23°C, while below (8°C) and above (26°C) this temperature range, rmr was significantly depressed. Ventilation frequency (f V) and mean mantle cavity pressure (MMP) followed an exponential relationship within the entire investigated temperature range (8–26°C). Oxygen extraction from the ventilatory current (EO2) decreased in a sigmoidal fashion with temperature, falling from > 90% at 8°C to 32% at 26°C. Consequently, ventilatory minute volume (MVV) increased by a factor of 20 from 7 to 150% body weight min−1 in the same temperature interval. Increases in MMP and MVV resulted in ventilatory muscle power output (P out) increasing by a factor of > 80 from 0.03 to 2.4 mW kg−1 animal. Nonetheless, costs for ventilatory mechanics remain below 1.5% rmr in the natural thermal window of the population (English Channel, 9–17°C), owing to very low MMPs of < 0.05 kPa driving the ventilatory stream, and may maximally rise to 8.6% rmr at 26°C. Model calculations suggest that the ventilatory system can maintain high arterial PO2 values of > 14 kPa over the entire temperature interval. We therefore conclude that the cuttlefish ventilation system is probably not limiting oxygen transfer during acute thermal stress. Depression of rmr, well before critical temperatures are being reached, is likely caused by circulatory capacity limitations and not by fatigue of ventilatory muscle fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander RMcN (1970) Functional design in fishes. Hutchinson, London, 160 pp

  • Bartol IK (2001) Role of aerobic and anaerobic circular mantle muscle fibers in swimming squid: electromyography. Biol Bull 200:59–66

    Article  PubMed  CAS  Google Scholar 

  • Bartol IK, Mann R, Patterson MR (2001) Aerobic respiratory costs of swimming in the negatively buoyant brief squid Lolliguncula brevis. J Exp Biol 204:3639–3653

    PubMed  CAS  Google Scholar 

  • Boal JG, Golden DK (1999) Distance chemoreception in the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda). J Exp Mar Biol Ecol 235:307–317

    Article  Google Scholar 

  • Boal JG, Ni JN (1996) Ventilation rate of cuttlefish, Sepia officinalis, in response to visual stimuli. Veliger 38(4):342–347

    Google Scholar 

  • Bone Q, Brown ER, Travers G (1994a) On the respiratory flow in the cuttlefish Sepia officinalis. J Exp Biol 194:153–165

    Google Scholar 

  • Bone Q, Brown ER, Usher M (1994b) The structure and physiology of cephalopod muscle fibres. In: Abbot NJ, Williamson R, Maddock L (eds) Cephalopod neurobiology. Oxford University Press, Oxford, pp 301–329

    Google Scholar 

  • Boucaud-Camou E, Boismery J (1991) The migrations of the cuttlefish (Sepia officinalis) in the English Channel. In: Boucaud-Camou E (ed) La Seiche, 1st international symposium on the cuttlefish Sepia. Centre of publications, Universite de Caen, pp 179–189

  • Burton RF (2002) Temperature and acid–base balance in ectothermic vertebrates: the imidazole alphastat hypothesis and beyond. J Exp Biol 205:3587–3600

    PubMed  CAS  Google Scholar 

  • Cameron JN, Cech JR (1970) Notes on the energy cost of gill ventilation in teleosts. Comp Biochem Physiol 34:447–455

    Article  Google Scholar 

  • Curtin NA, Woledge RC, Bone Q (2000) Energy storage by passive elastic structures in the mantle of Sepia officinalis. J Exp Biol 203:869–878

    PubMed  CAS  Google Scholar 

  • Denton EJ, Gilpin-Brown JB (1961) The buoyancy of the cuttlefish, Sepia officinalis (L.). J Mar Biol Assoc UK 41:319–342

    Article  Google Scholar 

  • Eno CN (1994) The morphometrics of cephalopod gills. J Mar Biol Assoc UK 74:687–706

    Google Scholar 

  • Farrell AP (2002) Cardiorespiratory performance in salmonids during exercise at high temperature: insights into cardiovascular design limitations in fishes. Comp Biochem Physiol A 132:797–810

    Article  CAS  Google Scholar 

  • Gilmour KM (2001) The CO2/pH ventilatory drive in fish. Comp Biochem Physiol A 130:219–240

    Article  CAS  Google Scholar 

  • Heath AG, Hughes GM (1973) Cardiovascular and respiratory changes during heat stress in the rainbow trout (Salmo gairdneri). J Exp Biol 59:323–338

    PubMed  CAS  Google Scholar 

  • Houlihan DF, Innes AJ, Wells MJ, Wells J (1982) Oxygen consumption and blood gases of Octopus vulgaris in hypoxic conditions. J Comp Physiol 148:35–40

    Google Scholar 

  • Houlihan DF, Agnisola C, Hamilton NM, Genoino TI (1987) Oxygen consumption of the isolated heart of octopus: effects of power output and hypoxia. J Exp Biol 131:137–157

    Google Scholar 

  • Howell BJ, Gilbert DL (1976) pH–temperature dependence of the hemolymph of the squid, Loligo pealei. Comp Biochem Physiol A 55:287–289

    Article  PubMed  CAS  Google Scholar 

  • Hughes GM (1973) Respiratory responses to hypoxia in fish. Am Zool 13:475–489

    Google Scholar 

  • Jobling M (1982) A study of some factors affecting rates of oxygen consumption of plaice, Pleuronectes platessa L. J Fish Biol 20:501–516

    Article  Google Scholar 

  • Johansen K, Brix O, Kornerup S, Lykkeboe G (1982a) Factors affecting O2-uptake in the cuttlefish, Sepia officinalis. J Mar Biol Assoc UK 62:187–191

    Article  Google Scholar 

  • Johansen K, Beix O, Lykkeboe G (1982b) Blood gas transport in the cephalopod, Sepia officinalis. J Exp Biol 99:331–338

    Google Scholar 

  • Jørgensen CB, Riisgård HU (1988) Gill pump characteristics of the soft clam Mya arenaria. Mar Biol 99:107–109

    Article  Google Scholar 

  • Lannig G, Bock C, Sartoris FJ, Pörtner HO (2004) Oxygen limitation of thermal tolerance in cod, Gadus morhua L. studied by magnetic resonance imaging (MRI) and on-line venous oxygen monitoring. Am J Physiol 287:R902–R910

    CAS  Google Scholar 

  • Madan JJ, Wells MJ (1996) Cutaneous respiration in Octopus vulgaris. J Exp Biol 199:2477–2483

    Google Scholar 

  • Mark FC, Bock C, Pörtner HO (2002) Oxygen-limited thermal tolerance in Antarctic fish investigated by MRI and 31P-MRS. Am J Physiol 283:R1254–R1262

    CAS  Google Scholar 

  • Melzner F, Bock C, Pörtner HO (2006) Critical temperatures in the cephalopod Sepia officinalis investigated using in vivo 31P NMR spectroscopy. J Exp Biol 209:891–906

    Article  PubMed  CAS  Google Scholar 

  • Messenger JB, Nixon M, Ryan KP (1985) Magnesiumchloride as an anaesthetic for cephalopods. Comp Biochem Physiol C 82:203–205

    Article  PubMed  CAS  Google Scholar 

  • Milligan BJ, Curtin NA, Bone Q (1997) Contractile properties of obliquely striated muscle from the mantle of squid (Alloteuthis subulata) and cuttlefish (Sepia officinalis). J Exp Biol 200:2425–2436

    PubMed  Google Scholar 

  • Mislin H (1966) Über die Beziehungen zwischen Atmung und Kreislauf bei Cephalopoden (Sepia officinalis L.). Synchronregistrierung von Elektrokardiogramm (Ekg) und Atembewegungen am schwimmenden Tier. Verh Dtsch Zool Ges 175–181

  • O’Dor RK, Webber DM (1986) The constraints on cephalopods: why squid aren’t fish. Can J Zool 64:1591–1605

    Google Scholar 

  • O’Dor RK, Webber DM (1991) Invertebrate athletes: trade-offs between transport efficiency and power density in cephalopod evolution. J Exp Biol 160:93–112

    Google Scholar 

  • O’Dor RK, Wells MJ (1987) Energy and nutrient flow. In: Boyle PR (ed) Cephalopod life cycles. Comparative reviews, vol 2. Academic, London, pp 109–133

  • Packard A (1972) Cephalopods and fish: limits of convergence. Biol Rev 47:241–307

    Article  CAS  Google Scholar 

  • Perry SF, McKendry JE (2001) The relative roles of external and internal CO2 versus H+ in eliciting the cardiorespiratory responses of Salmo salar and Squalus acanthias to hypercarbia. J Exp Biol 204:3963–3971

    PubMed  CAS  Google Scholar 

  • Piiper J (1998) Branchial gas transfer models. Comp Biochem Physiol A 119:125–130

    Article  Google Scholar 

  • Pörtner HO (2002) Climate change and temperature dependent biogeography: systemic to molecular hierarchies of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Google Scholar 

  • Pörtner HO, Mark FC, Bock C (2004) Oxygen limited thermal tolerance in fish? Answers obtained by nuclear magnetic resonance techniques. Respir Physiol Neurobiol 141:243–260

    Article  PubMed  CAS  Google Scholar 

  • Reeves RB (1972) An imidazole alphastat hypothesis for vertebrate acid–base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol 14:219–236

    Article  PubMed  CAS  Google Scholar 

  • Sartoris FJ, Bock C, Serendero I, Lannig G, Pörtner HO (2003) Temperature-dependent changes in energy metabolism, intracellular pH and blood oxygen tension in the Atlantic cod. J Fish Biol 62:1239–1253

    Article  CAS  Google Scholar 

  • Schumann D, Piiper J (1966) Der Sauerstoffbedarf der Atmung bei Fischen nach Messungen an der narkotisierten Schleie (Tinca tinca). Pflügers Archiv Eur J Physiol 288 (1):15–26

    Article  CAS  Google Scholar 

  • Seibel BA, Thuesen EV, Childress JJ, Gorodezky LA (1997) Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol Bull 192:262–278

    Article  Google Scholar 

  • Steffensen JF, Lomholt JP, Johansen K (1982) Gill ventilation and O2 extraction during graded hypoxia in two ecologically distinct species of flatfish, the flounder (Platichthys flesus) and the plaice (Pleuronectes platessa). Environ Biol Fish 2:157–163

    Article  Google Scholar 

  • Syme DA (1994) The efficiency of frog ventricular muscle. J Exp Biol 197:143–164

    PubMed  CAS  Google Scholar 

  • Terbeck S (2003) Der Einfluss von Kalium auf die Aktivität von Sepia officinalis. Diploma thesis, University of Münster, 61 pp

  • Vogel S (1994) Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton, 467 pp

  • Webber DM, O’Dor RK (1986) Monitoring the metabolic rate and activity of free-swimming squid with telemetered jet pressure. J Exp Biol 126:202–224

    Google Scholar 

  • Wells MJ (1990) Oxygen extraction and jet propulsion in cephalopods. Can J Zool 68:815–824

    Article  Google Scholar 

  • Wells MJ, Clarke A (1996) The costs of living and reproducing for an individual cephalopod. Philos Trans R Soc Lond B 351:1083–1104

    Article  Google Scholar 

  • Wells MJ, Wells J (1982) Ventilatory currents in the mantle of cephalopods. J Exp Biol 99:315–330

    Google Scholar 

  • Wells MJ, Wells J (1983) The circulatory response to acute hypoxia in Octopus. J Exp Biol 104:59–71

    Google Scholar 

  • Wells MJ, Wells J (1985a) Ventilation frequencies and stroke volumes in acute hypoxia in Octopus. J Exp Biol 118:445–448

    Google Scholar 

  • Wells MJ, Wells J (1985b) Ventilation and oxygen uptake by Nautilus. J Exp Biol 118:297–312

    Google Scholar 

  • Wells MJ, Wells J (1986) Blood flow in acute hypoxia in a cephalopod. J Exp Biol 122:345–353

    Google Scholar 

  • Wells MJ, Wells J (1991) Is Sepia really an octopus? In: Boucaud-Camou E (ed) La Seiche, 1st international symposium on the cuttlefish Sepia. Centre de publications, Universite de Caen, pp 77–92

  • Wells MJ, Wells J (1995) The control of ventilatory and cardiac responses to changes in ambient oxygen tension and oxygen demand in octopus. J Exp Biol 198:1717–1727

    PubMed  Google Scholar 

  • Wells MJ, Hanlon RT, Lee PG, DiMarco FP (1988) Respiratory and cardiac performance in Lolliguncula brevis (Cephalopoda, Myopsida): the effects of activity, temperature and hypoxia. J Exp Biol 138:17–36

    Google Scholar 

  • Zielinski S, Sartoris FJ, Pörtner HO (2001) Temperature effects on hemocyanin oxygen binding in an Antarctic cephalopod. Biol Bull 200:67–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out in support of the project “The cellular basis of standard and active metabolic rate in the free-ranging cephalopod, Sepia officinalis” (NER/A/S/2002/00812). The authors wish to thank Rolf Wittig and Timo Hirse for their excellent technical support, Raymond and Marie-Paule Chichery (Université de Caen) for providing cuttlefish eggs in 2002 and 2003 and all student helpers that were engaged in raising the animals in our lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Melzner.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melzner, F., Bock, C. & Pörtner, H.O. Temperature-dependent oxygen extraction from the ventilatory current and the costs of ventilation in the cephalopod Sepia officinalis . J Comp Physiol B 176, 607–621 (2006). https://doi.org/10.1007/s00360-006-0084-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0084-9

Keywords

Navigation