Skip to main content

Advertisement

Log in

The biology and ecology of the Antarctic limpet Nacella concinna

  • Review
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Physiological studies suggest that Antarctic marine organisms are adversely affected by rising global temperatures and ocean acidification and have poor prospects for survival. However, according to ecological studies, their vulnerability might be less severe than initially thought. Thus, a realistic forecast of species survival and Antarctic biodiversity should be based on studies from a variety of species under consideration of ecological factors. The limpet Nacella concinna is often found in the rocky intertidal and sublittoral zones of the Antarctic Peninsula and adjacent subantarctic islands. This review summarizes most of the available information on the biology of this limpet, one of the most conspicuous invertebrates of the intertidal zone. There is some evidence that adult N. concinna are physiologically flexible and can acclimate to 3 °C. However, the requirements of the larval stage are poorly known, thus precluding realistic predictions of how elevated temperatures will affect N. concinna populations. Data on physiological performance (righting ability, tenacity and radula rasping rate) under different temperatures could provide a useful baseline for further field investigations on the effects of warming. The species could be used as model organism for investigating the biological effects of ongoing global warming on slow-growing Antarctic ectotherms. Nacella concinna might also be a better biomonitor for polycyclic aromatic hydrocarbons than other Antarctic mollusks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abele D, Burlando B, Viarengo A, Pörtner HO (1998) Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp Biochem Physiol B: Biochem Mol Biol 120:425–435

    Article  Google Scholar 

  • Abele D, Atencio A, Dick D, Gonzalez O, Kriews M, Meyer S, Philipp E, Stölting V (2008) Iron, copper and manganese discharge from glacial melting into Potter Cove and metal concentrations in Laternula elliptica shells. Alfred-Wegener-Institute, 571. http://hdl.handle.net/10013/epic.30038

  • Ahn IY, Kim KW, Choi HJ (2002) A baseline study on metal concentrations in the Antarctic limpet Nacella concinna (Gastropoda: Patellidae) on King George Island: variations with sex and body parts. Mar Pollut Bull 44:424–431

    Article  CAS  PubMed  Google Scholar 

  • Ahn IY, Choi HJ, Kim KW (2003) Heavy metal pollution monitoring at King Sejong Station, King George Island, Antarctica. Ocean Polar Res 25:645–652

    Article  CAS  Google Scholar 

  • Ahn IY, Chung KH, Choi HJ (2004) Influence of glacial runoff on baseline metal accumulation in the Antarctic limpet Nacella concinna from King George Island. Mar Pollut Bull 49:119–127

    Article  CAS  PubMed  Google Scholar 

  • Alam IA, Sadiq M (1993) Metal concentrations in Antarctic sediment samples collected during the Trans-Antarctica 1990 expedition. Mar Pollut Bull 26:523–527

    Article  CAS  Google Scholar 

  • Anestis A, Pörtner HO, Karagiannis D, Angelidis P, Staikou A, Michaelidis B (2010) Response of Mytilus galloprovincialis (L.) to increasing seawater temperature and to marteliosis: Metabolic and physiological parameters. Comp Biochem Physiol A: Mol Integr Physiol 156:57–66

    Article  CAS  Google Scholar 

  • Ansaldo M, Najle R, Luquet CM (2005) Oxidative stress generated by diesel seawater contamination in the digestive gland of the Antarctic limpet Nacella concinna. Mar Environ Res 59:381–390

    Article  CAS  PubMed  Google Scholar 

  • Ansaldo M, Sacristán H, Wider E (2007) Does starvation influence the antioxidant status of the digestive gland of Nacella concinna in experimental conditions? Comp Biochem Physiol C: Toxicol Pharmacol 146:118–123

    Google Scholar 

  • Aranzamendi MC, Sahade R, Tatián M, Chiappero M (2008) Genetic differentiation between morphotypes in the Antarctic limpet Nacella concinna as revealed by inter-simple sequence repeat markers. Mar Biol 154:875–885. doi:10.1007/s00227-008-0980-5

    Article  CAS  Google Scholar 

  • Barnes DKA (2013) Marine biology: new light on growth in the cold. Curr Biol 23:R609–R611. doi:10.1016/j.cub.2013.05.058

    Article  CAS  PubMed  Google Scholar 

  • Barnes DKA, Brockington S (2003) Zoobenthic biodiversity, biomass and abundance at Adelaide Island, Antarctica. Mar Ecol-Prog Ser 249:145–155

    Article  Google Scholar 

  • Barnes DKA, Peck LS (2008) Vulnerability of Antarctic shelf biodiversity to predicted regional warming. Climate Research 37:149–163

    Article  Google Scholar 

  • Barnes DKA, Fuentes V, Clarke A, Schloss IR, Wallace MI (2006) Spatial and temporal variation in shallow seawater temperatures around Antarctica. Deep Sea Res Part II 53:853–865. doi:10.1016/j.dsr2.2006.03.008

    Article  Google Scholar 

  • Beaumont AR, Wei JHC (1991) Morphological and genetic variation in the Antarctic limpet Nacella concinna (Strebel, 1908). J Mollusc Stud 57:443–450

    Article  Google Scholar 

  • Berry RJ, Rudge PJ (1973) Natural selection in Antarctic limpets. Br Antarct Surv B 35:73–81

    Google Scholar 

  • Bolten JF, Dall WH, Lichtenstein AAH, Pfeiffer LGK, Röding PF (1798) Museum Boltenianum sive Catalogus cimeliorum e tribus regnis naturae quae olim collegerat Joa. Fried Bolten, M. D. p. d. per XL. annos Proto physicus Hamburgensis. Typis Johan. Christi. Trappii, Hamburgi

  • Bowden DA (2005) Quantitative characterization of shallow marine benthic assemblages at Ryder Bay, Adelaide Island, Antarctica. Mar Biol 146:1235–1249. doi:10.1007/s00227-004-1526-0

    Article  Google Scholar 

  • Bowden D, Clarke A, Peck L (2009) Seasonal variation in the diversity and abundance of pelagic larvae of Antarctic marine invertebrates. Mar Biol 156:2033–2047. doi:10.1007/s00227-009-1235-9

    Article  Google Scholar 

  • Bowgen AD, Fraser KPP, Peck LS, Clarke A (2007) Energetic cost of synthesizing proteins in Antarctic limpet, Nacella concinna (Strebel, 1908), is not temperature dependent. Am J Physiol Reg I 292:2266–2274

    Google Scholar 

  • Branch GM (1981) The biology of limpets: physical factors, energy flow, and ecological interactions. Oceanogr Mar Biol Annu Rev 19:235–380

    Google Scholar 

  • Brêthes JC, Ferreyra G, Vega S (1994) Distribution, growth and reproduction of the limpet Nacella (Patinigera) concinna (Strebel 1908) in relation to potential food availability, in Esperanza Bay (Antarctic Peninsula). Polar Biol 14:161–170

    Article  Google Scholar 

  • Brinkhoff W, Stöckmann K, Grieshaber M (1983) Natural occurrence of anaerobiosis in molluscs from intertidal habitats. Oecologia 57:151–155. doi:10.2307/4216939

    Article  Google Scholar 

  • Cadée GC (1999) Shell damage and shell repair in the Antarctic limpet Nacella concinna from King George Island. J Sea Res 41:149–161

    Article  Google Scholar 

  • Choy EJ, Park H, Kim J-H, Ahn I-Y, Kang C-K (2011) Isotopic shift for defining habitat exploitation by the Antarctic limpet Nacella concinna from rocky coastal habitats (Marian Cove, King George Island). Estuar Coast Shelf Sci 92:339–346. doi:10.1016/j.ecss.2011.01.009

    Article  CAS  Google Scholar 

  • Chwedorzewska K, Korczak M, Bednarek P, Markowska-Potocka M (2010) Low genetic differentiation between two morphotypes of the gastropod Nacella concinna from Admiralty Bay, Antarctica. Pol Polar Res 31:195–200

    Article  Google Scholar 

  • Clark MS, Peck LS (2009a) HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review. Mar Geonomics 2:11–18

    Article  Google Scholar 

  • Clark MS, Peck LS (2009b) Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna). Cell Stress Chaperon 14:649–660

    Article  CAS  Google Scholar 

  • Clark MS, Fraser KPP, Peck LS (2008a) Antarctic marine molluscs do have an HSP70 heat shock response. Cell Stress Chaperon 13:39–49

    Article  CAS  Google Scholar 

  • Clark MS, Geissler P, Waller C, Fraser KPP, Barnes DKA, Peck LS (2008b) Low heat shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna). Cell Stress Chaperon 13:51–58

    Article  CAS  Google Scholar 

  • Clarke A (1990) Faecal egestion and ammonia excretion in the Antarctic limpet Nacella continna (Strebel, 1908). J Exp Mar Biol Ecol 138:227–246

    Article  Google Scholar 

  • Clarke A, Holmes LJ, White MG (1988) The annual cycle of temperature, chlorophyll and major nutrients at Signy Island, South Orkney Islands, 1969–82. Br Antarct Surv B 80:65–86

    Google Scholar 

  • Clarke A, Prothero-Thomas E, Whitehouse MJ (1994) Nitrogen excretion in the Antarctic limpet Nacella concinna (Strebel, 1908). J Mollusc Stud 60:141–147

    Article  Google Scholar 

  • Clarke A, Prothero-Thomas E, Beaumont JC, Chapman AL, Brey T (2004) Growth in the limpet Nacella concinna from contrasting sites in Antarctica. Polar Biol 28:62–71

    Google Scholar 

  • Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo KR, Barbraud C, Barnes DKA, Bindoff NL, Boyd PW, Brandt A, Costa DP, Davidson AT, Ducklow HW, Emmerson L, Fukuchi M, Gutt J, Hindell MA, Hofmann EE, Hosie GW, Iida T, Jacob S, Johnston NM, Kawaguchi S, Kokubun N, Koubbi P, Lea M-A, Makhado A, Massom RA, Meiners K, Meredith MP, Murphy EJ, Nicol S, Reid K, Richerson K, Riddle MJ, Rintoul SR, Smith WO, Southwell C, Stark JS, Sumner M, Swadling KM, Takahashi KT, Trathan PN, Welsford DC, Weimerskirch H, Westwood KJ, Wienecke BC, Wolf-Gladrow D, Wright SW, Xavier JC, Ziegler P (2014) Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob Change Biol 20:3004–3025. doi:10.1111/gcb.12623

    Article  Google Scholar 

  • Corbisier T, Petti MV, Skowronski RP, Brito TS (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27:75–82

    Article  Google Scholar 

  • Cripps GC, Priddle J (1995) Hydrocarbon content of an Antarctic infaunal bivalve - historical record or life cycle changes? Antarct Sci 7:127–136. doi:10.1017/S0954102095000186

    Article  Google Scholar 

  • Curtosi A, Pelletier E, Vodopivez CL, Mac Cormack WP (2009) Distribution of PAHs in the water column, sediments and biota of Potter Cove, South Shetland Islands, Antarctica. Antarct Sci 21:329–339

    Article  Google Scholar 

  • Davenport J (1988) Tenacity of the Antarctic limpet Nacella concinna. J Mollusc Stud 54:355–356

    Article  Google Scholar 

  • Davenport J (1997) Comparisons of the biology of the intertidal subantarctic limpets Nacella concinna and Kerguelenella lateralis. J Mollusc Stud 63:39–48

    Article  Google Scholar 

  • Davenport J (2001) Meltwater effects on intertidal Antarctic limpets, Nacella concinna. J Mar Biol Assoc UK 81:643–649. doi:10.1017/S0025315401004313

    Google Scholar 

  • Davenport J, Macalister H (1996) Environmental conditions and physiological tolerances of intertidal fauna in relation to shore zonation at Husvik, South Georgia. J Mar Biol Assoc UK 76:985–1002

    Article  Google Scholar 

  • Donovan D, Baldwin J, Carefoot T (1999) The contribution of anaerobic energy to gastropod crawling and a re-estimation of minimum cost of transport in the abalone, Haliotis kamtschatkana (Jonas). J Exp Mar Biol Ecol 235:273–284. doi:10.1016/S0022-0981(98)00174-9

    Article  Google Scholar 

  • Engl W (2012) Shells of Antarctica. Conchbooks, Hackenheim

    Google Scholar 

  • Favero M, Silva MP (1998) How important are pelagic preys for the kelp gull during chick-rearing at the South Shetland Islands? Polar Biol 19:32–36

    Article  Google Scholar 

  • Favero M, Silva P, Ferreyra G (1997) Trophic relationships between the kelp gull and the Antarctic limpet at King George Island (South Shetland Islands, Antarctica) during the breeding season. Polar Biol 17:431–436

    Article  Google Scholar 

  • Feijó de Oliveira M (2013) Resposta biológica do gastrópode antártico Nacella concinna (Strebel, 1908) ao óleo diesel como possível biomarcador de impacto ambiental na zona entre marés. MSc dissertation, Curitiba

  • Feijó de Oliveira M, Rodrigues Júnior E, Suda CNK, Vani GS, Donatti L, Rodrigues E, Lavrado HP (2015) Interactions of temperature, salinity and diesel oil on antioxidant defense enzymes of the limpet Nacella concinna. Mar Pollut Bull 97:451–459. doi:10.1016/j.marpolbul.2015.05.048

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo MIS (2012) Biologia populacional de Nacella concinna (Strebel, 1908) (Gastropoda - Nacellidade) na Baia do Almirantado, Ilha Rei George, Antartica. MSc dissertation. Museu Nacional, Rio de Janeiro

  • Figueiredo MIS, Lavrado HP (2011) Aspects of population structure of Nacella concinna (Strebel, 1908) (Gastropoda – Nacellidae) at Admiralty bay, King George Island, Antarctica. Annual Activity Report/National Institute of Science and Technology Antarctic Environmental Research—Instituto Nacional de Ciência e Tecnologia Antártico de Pesquisas Ambientais (INCT-APA) – 2010. 167–170. doi: 10.4322/apa.2014.044

  • Fraser KPP, Clarke A, Peck LS (2002a) Feast and famine in Antarctica: seasonal physiology in the limpet Nacella concinna. Mar Ecol Prog Ser 242:169–177

    Article  Google Scholar 

  • Fraser KPP, Clarke A, Peck LS (2002b) Low-temperature protein metabolism: seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet Nacella concinna Strebel 1908. J Exp Biol 205:3077–3086

    CAS  PubMed  Google Scholar 

  • Fraser KPP, Clarke A, Peck LS (2007) Growth in the slow lane: protein metabolism in the Antarctic limpet Nacella concinna (Strebel 1908). J Exp Biol 210:2691–2699

    Article  PubMed  Google Scholar 

  • Gäde G (1988) Energy metabolism during anoxia and recovery in shell adductor and foot muscle of the gastropod mollusc Haliotis lamellosa: formation of the novel anaerobic end product tauropine. Biol Bull 175:122–131

    Article  Google Scholar 

  • Gäde G, Grieshaber MK (1986) Pyruvate reductases catalyze the formation of lactate and opines in anaerobic invertebrates. Comp Biochem Physiol B: Biochem Mol Biol 83:255–272

    Article  Google Scholar 

  • González-Wevar CA, Nakano T, Cañete JI, Poulin E (2010) Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol Phylogenet Evol 56:115–124

    Article  Google Scholar 

  • González-Wevar CA, David B, Poulin E (2011) Phylogeography and demographic inference in Nacella (Patinigera) concinna (Strebel, 1908) in the western Antarctic Peninsula. Deep Sea Res Part II 58:220–229. doi:10.1016/j.dsr2.2010.05.026

    Article  Google Scholar 

  • González-Wevar CA, Dias A, Gerard K, Canete JI, Poulin E (2012) Divergence time estimations and contrasting patterns of genetic diversity between Antarctic and southern South America benthic invertebrates. Rev Chil Hist Nat 85:445–456

    Article  Google Scholar 

  • González-Wevar CA, Saucède T, Morley SA, Chown SL, Poulin E (2013) Extinction and recolonization of maritime Antarctica in the limpet Nacella concinna (Strebel, 1908) during the last glacial cycle: Toward a model of quaternary biogeography in shallow Antarctic invertebrates. Mol Ecol 22:5221–5236

    Article  PubMed  Google Scholar 

  • Gracey AY, Chaney ML, Boomhower JP, Tyburczy WR, Connor K, Somero GN (2008) Rhythms of gene expression in a fluctuating intertidal environment. Curr Biol 18:1501–1507

    Article  CAS  PubMed  Google Scholar 

  • Grieshaber MK, Hardewig I, Kreutzer U, Pörtner HO (1994) Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 125:43–147

    CAS  PubMed  Google Scholar 

  • Hargens AR, Shabica SV (1973) Protection against lethal freezing temperatures by mucus in an antarctic limpet. Cryobiology 10:331–337

    Article  CAS  PubMed  Google Scholar 

  • Hawes TC, Worland MR, Bale JS (2010) Freezing in the Antarctic limpet, Nacella concinna. Cryobiology 61:128–132

    Article  CAS  PubMed  Google Scholar 

  • Hedgpeth JW (1969) Preliminary observations of life between tidemarks at Palmer Station, 64o45‘S and 64o05‘W. Antarct J US 4:106–107

    Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Hoffman JI, Peck LS, Hillyard G, Zieritz A, Clark MS (2010) No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes. Mar Biol 157:765–778

    Article  CAS  Google Scholar 

  • Hedgpeth JW (1969) Preliminary observations of life between tidemarks at Palmer Station, 64 45‘S and 64 05‘W. Antarct J US 4:106–107

    Google Scholar 

  • Hoffman JI, Clarke A, Linse K, Peck LS (2011a) Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar Biol 158:287–296

    Article  Google Scholar 

  • Hoffman JI, Peck LS, Linse K, Clarke A (2011b) Strong population genetic structure in a broadcast-spawning antarctic marine invertebrate. J Hered 102:55–66

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JI, Clarke A, Clark MS, Fretwell P, Peck LS (2012) Unexpected fine-scale population structure in a broadcast-spawning antarctic marine mollusc. PLoS ONE 7:e32415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hombron JB, Jacquinot CH (1841) Suite de la description de quelques Mollusques, provenant de la campagne de l’Astrolabe et de la Zélée. Ann Sci Nat Paris (Zoologie Ser 2) 16:190–192

    Google Scholar 

  • Houlihan DF, Allan D (1982) Oxygen consumption of some Antarctic and British gastropods: an evaluation of cold adaptation. Comp Biochem Physiol A: Mol Integr Physiol 73:383–387

    Article  Google Scholar 

  • Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63:218–242

    Article  CAS  PubMed  Google Scholar 

  • Kennicutt MC II (1990) Oil spillage in Antarctica: initial report of the National Science Foundation-sponsored Quick Response Team on the grounding of the Bahia Paraiso. Environ Sci Technol 24:620–624. doi:10.1021/es00075a601

    Article  Google Scholar 

  • Kennicutt MC II, Sweet ST (1992) Hydrocarbon contamination on the Antarctic peninsula: III. The Bahia Paraiso—two years after the spill. Mar Pollut Bull 25:303–306

    Article  CAS  Google Scholar 

  • Kennicutt MC II, McDonald TJ, Denoux GJ, McDonald SJ (1992) Hydrocarbon contamination on the antarctic peninsula. II. Arthur Harbor inter- and subtidal limpets (Nacella concinna). Mar Pollut Bull 24:506–511

    Article  CAS  Google Scholar 

  • Kidawa A, Stepanowska K, Markowska M, Rakusa-Suszczewski S (2008) Fish blood as a chemical signal for Antarctic marine invertebrates. Polar Biol 31:519–525

    Article  Google Scholar 

  • Kim D (2001) Seasonality of marine algae and grazers of an Antarctic rocky intertidal, with emphasis on the role of the limpet Nacella concinna Strebel (Gastropoda: Patellidae). Ber Polarforsch Meeresforsch 397:1–120

    Google Scholar 

  • Koike I, Holmhansen O, Biggs DC (1986) Inorganic nitrogen-metabolism by Antarctic phytoplankton with special reference to ammonium cycling. Mar Ecol Progr Ser 30:105–116. doi:10.3354/meps030105

    Article  CAS  Google Scholar 

  • Lemaitre R, Harasewych MG, Hammock J (2009) ANTIZ v 1.07: a database of Antarctic and Subantarctic marine invertebrates. National Museum of Natural History, Smithsonian Institution. World Wide Web electronic publication. http://invertebrates.si.edu/ANTIZ. Accessed 1 June 2014

  • Lurman G, Blaser T, Lamare M, Tan KS, Poertner H, Peck LS, Morley SA (2010) Ultrastructure of pedal muscle as a function of temperature in nacellid limpets. Mar Biol 157:1705–1712

    Article  Google Scholar 

  • Mackensen A (2004) Changing Southern Ocean palaeocirculation and effects on global climate. Antarct Sci 16:369–386

    Article  Google Scholar 

  • Mahon A, Amsler C, McClintock J, Baker B (2002) Chemo-tactile predator avoidance responses of the common Antarctic limpet Nacella concinna. Polar Biol 25:469–473

    Google Scholar 

  • Markowska M, Kidawa A (2007) Encounters between Antarctic limpets, Nacella concinna, and predatory sea stars, Lysasterias sp., in laboratory and field experiments. Mar Biol 151:1959–1966

    Article  Google Scholar 

  • Martin S, Thouzeau G, Chauvaud L, Jean F, Guérin L, Clavier J (2006) Respiration, calcification, and excretion of the invasive slipper limpet, Crepidula fornicata L.: implications for carbon, carbonate, and nitrogen fluxes in affected areas. Limnol Oceanogr 51:1996–2007. doi:10.4319/lo.2006.51.5.1996

    Article  CAS  Google Scholar 

  • Mayer M, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684. doi:10.1007/s00018-004-4464-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClintock JB, Angus RA, McDonald MR, Amsler CD, Catledge SA, Vohra YK (2009) Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarct Sci 21:449–456. doi:10.1017/S0954102009990198

    Article  Google Scholar 

  • Michaelidis B, Haas D, Grieshaber MK (2005) Extracellular and Intracellular acid-base status with regard to the energy metabolism in the oyster Crassostrea gigas during exposure to air. Physiol Biochem Zool 78:373–383. doi:10.1086/430223

    Article  CAS  PubMed  Google Scholar 

  • Moreno JEA, Gerpe MS, Moreno VJ, Vodopivez C (1997) Heavy metals in Antarctic organisms. Polar Biol 17:131–140

    Article  Google Scholar 

  • Morley SA, Hirse T, Pörtner HO, Peck LS (2009a) Geographical variation in thermal tolerance within Southern Ocean marine ectotherms. Comp Biochem Physiol A: Mol Integr Physiol 153:154–161

    Article  CAS  Google Scholar 

  • Morley SA, Lurman GJ, Skepper JN, Pörtner HO, Peck LS (2009b) Thermal plasticity of mitochondria: a latitudinal comparison between Southern Ocean molluscs. Comp Biochem Physiol A: Mol Integr Physiol 152:423–430

    Article  CAS  Google Scholar 

  • Morley SA, Clark MS, Peck LS (2010) Depth gradients in shell morphology correlate with thermal limits for activity and ice disturbance in Antarctic limpets. J Exp Mar Biol Ecol 390:1–5

    Article  Google Scholar 

  • Morley SA, Lemmon V, Obermüller BE, Spicer JI, Clark MS, Peck LS (2011) Duration tenacity: a method for assessing acclimatory capacity of the Antarctic limpet, Nacella concinna. J Exp Mar Biol Ecol 399:39–42

    Article  Google Scholar 

  • Morley SA, Martin SM, Bates AE, Clark MS, Ericson J, Lamare M, Peck LS (2012) Spatial and temporal variation in the heat tolerance limits of two abundant Southern Ocean invertebrates. Mar Ecol Prog Ser 450:81–92. doi:10.3354/meps09577

    Article  Google Scholar 

  • Morley SA, Lai C-H, Clarke A, Tan KS, Thorne MAS, Peck LS (2014) Limpet feeding rate and the consistency of physiological response to temperature. J Comp Physiol B 184:563–570. doi:10.1007/s00360-014-0814-3

    Article  PubMed  Google Scholar 

  • Najle R, Elissondo M, Gentile S, Gentile M, Vacarezza G, Solana H (2000) Histopathology of the digestive gland of an Antarctic limpet exposed to cadmium. Sci Total Environ 247:263–268

    Article  CAS  PubMed  Google Scholar 

  • Nolan CP (1991) Size, shape and shell morphology in the Antarctic limpet Nacella concinna at Signy island, South Orkney islands. J Mollus Stud 57:225–238

    Article  Google Scholar 

  • Obermüller BE, Morley SA, Clark MS, Barnes DKA, Peck LS (2011) Antarctic intertidal limpet ecophysiology: a winter–summer comparison. J Exp Mar Biol Ecol 403:39–45

    Article  Google Scholar 

  • Peck LS (1989) Temperature and basal metabolism in two Antarctic marine herbivores. J Exp Mar Biol Ecol 127:1–12

    Article  Google Scholar 

  • Peck L (2005) Prospects for surviving climate change in Antarctic aquatic species. Frontiers in Zoology 2:9. doi:10.1186/1742-9994-2-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Peck LS, Veal R (2001) Feeding, metabolism and growth in the Antarctic limpet, Nacella concinna (Strebel 1908). Mar Biol 138:553–560

    Article  CAS  Google Scholar 

  • Peck LS, Prothero-Thomas E, Hough N (1993) Pedal mucus production by the Antarctic limpet Nacella concinna (Strebel, 1908). J Exp Mar Biol Ecol 174:177–192

    Article  Google Scholar 

  • Peck LS, Baker AC, Conway LZ (1996) Strontium labeling of the shell of the antarctic limpet Nacella concinna (Strebel, 1908). J Mollusc Stud 62:315–325

    Article  Google Scholar 

  • Peck LS, Portner HO, Hardewig I (2002) Metabolic demand, oxygen supply, and critical temperatures in the Antarctic bivalve Laternula elliptica. Physiol Biochem Zool 75:123–133. doi:10.1086/340990

    Article  PubMed  Google Scholar 

  • Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630

    Article  Google Scholar 

  • Peck LS, Clark MS, Morley SA, Massey A, Rossetti H (2009) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248–256

    Article  Google Scholar 

  • Peck L, Morley S, Clark M (2010) Poor acclimation capacities in Antarctic marine ectotherms. Mar Biol 157:2051–2059. doi:10.1007/s00227-010-1473-x

    Article  Google Scholar 

  • Peck LS, Morley SA, Richard J, Clark MS (2014) Acclimation and thermal tolerance in Antarctic marine ectotherms. J Exp Biol 217:16–22

    Article  PubMed  Google Scholar 

  • Picken GB (1980) The distribution, growth, and reproduction of the Antarctic limpet Nacella (Patinigera) concinna (Strebel, 1908). J Exp Mar Biol Ecol 42:71–85

    Article  Google Scholar 

  • Picken GB, Allan D (1983) Unique spawning behaviour by the Antarctic limpet Nacella (Patinigera) concinna (Strebel, 1908). J Exp Mar Biol Ecol 71:283–287

    Article  Google Scholar 

  • Pörtner HO, Peck L, Zielinski S, Conway LZ (1999) Intracellular pH and energy metabolism in the highly stenothermal Antarctic bivalve Limopsis marionensis as a function of ambient temperature. Polar Biol 22:17–30

    Article  Google Scholar 

  • Powell AWB (1951) Antarctic and subantarctic mollusca: Pelecypoda and Gastropoda. Discov Rep 26:47–196

    Google Scholar 

  • Powell AWB (1973) The patellid limpets of the world (Patellidae). Indo-Pacific Mollusca 3:75–205

    Google Scholar 

  • Powell DK, Tyler PA, Peck LS (2001) Effect of sperm concentration and sperm ageing on fertilisation success in the Antarctic soft-shelled clam Laternula elliptica and the Antarctic limpet Nacella concinna. Mar Ecol Prog Ser 215:191–200

    Article  Google Scholar 

  • Ralph R, Maxwell JGH (1977) The oxygen consumption of the Antarctic limpet. Br Antarct Surv B 45:19–23

    Google Scholar 

  • Rodrigues E, Lavrado HP, Donatti L, Suda CNK, Rodrigues Jr E, Oliveira MF, Vani GS (2011) Arginase kinetic characterization of the gastropod Nacella concinna and its physiological relation with energy requirement demand and the presence of heavy metals. Annual Activity Report/National Institute of Science and Technology Antarctic Environmental Research—Instituto Nacional de Ciência e Tecnologia Antártico de Pesquisas Ambientais (INCT-APA) – 2010. 131–136. doi: 10.4322/apa.2014.037

  • Santini G, Bruschini C, Pazzagli L, Pieraccini G, Moneti G, Chelazzi G (2001) Metabolic responses of the limpet Patella caerulea (L.) to anoxia and dehydration. Comp Biochem Physiol Biochem Mol Biol 130:1–8. doi:10.1016/S1095-6433(01)00361-0

    Article  CAS  Google Scholar 

  • Shabica SV (1971) General ecology of the antarctic limpet Patinigera polaris. Antarct J US 6:160–161

    Google Scholar 

  • Shabica SV (1976) The natural history of the Antarctic limpet-Patinigera polaris (Hombron and Jaquinot). PhD dissertation, University of Oregon, Corvallis

  • Silva MP, Favero M, Martínez MM (1999) Prey size selectivity by kelp gulls on Antarctic limpets at King George Island, Antarctica. Polar Biol 21:397–400

    Article  Google Scholar 

  • Stanwell-Smith D, Clarke A (1998) The timing of reproduction in the Antarctic limpet Nacella concinna (Strebel, 1908) (Patellidae) at Signy Island, in relation to environmental variables. J Mollusc Stud 64:123–127

    Article  Google Scholar 

  • Temnikow NK, Brand TD, Moe RL (1976) Marine biology at Palmer Station: 1974 austral winter. Antarct J US 11:27–29

    Google Scholar 

  • Tielens AGM, Rotte C, Van Hellemond JJ, Martin W (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27:564–572

    Article  CAS  PubMed  Google Scholar 

  • Walker AJM (1972) Introduction to the ecology of the Antarctic limpet, Patinigera polaris (Hombron & Jaquinot) at Signy Island, south Orkney Islands. Brit Antarct Surv B 28:49–71

    Google Scholar 

  • Waller CL, Barnes DKA, Convey P (2006a) Ecological contrasts across an Antarctic land–sea interface. Austral Ecol 31:656–666. doi:10.1111/j.1442-9993.2006.01618.x

    Article  Google Scholar 

  • Waller CL, Worland MR, Convey P, Barnes DKA (2006b) Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol 29:1077–1083

    Article  Google Scholar 

  • Weihe E, Abele D (2008) Differences in the physiological response of inter- and subtidal Antarctic limpets Nacella concinna to aerial exposure. Aquat Biol 4:155–166

    Article  Google Scholar 

  • Weihe E, Kriews M, Abele D (2010) Differences in heavy metal concentrations and in the response of the antioxidant system to hypoxia and air exposure in the Antarctic limpet Nacella concinna. Mar Environ Res 69:127–135

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dagmar Frisch (University of Birmingham, UK) for editing the English. This work was supported by the National Institute of Science and Technology Antarctic Environmental Research (INCT-APA) that receives financial support from the National Council for Research and Development (CNPq) process: No. 574018/2008-5 and Carlos Chagas Research Support Foundation of the State of Rio de Janeiro (FAPERJ) process: No. E-16/170.023/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia N. K. Suda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suda, C.N.K., Vani, G.S., de Oliveira, M.F. et al. The biology and ecology of the Antarctic limpet Nacella concinna . Polar Biol 38, 1949–1969 (2015). https://doi.org/10.1007/s00300-015-1789-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1789-6

Keywords

Navigation