Skip to main content

Advertisement

Log in

The influence of thermal extremes on coral reef fish behaviour in the Arabian/Persian Gulf

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Despite increasing environmental variability within marine ecosystems, little is known about how coral reef fish species will cope with future climate scenarios. The Arabian/Persian Gulf is an extreme environment, providing an opportunity to study fish behaviour on reefs with seasonal temperature ranges which include both values above the mortality threshold of Indo-Pacific reef fish, and values below the optimum temperature for growth. Summer temperatures in the Gulf are comparable to those predicted for the tropical ocean by 2090–2099. Using field observations in winter, spring and summer, and laboratory experiments, we examined the foraging activity, distance from refugia and resting time of Pomacentrus trichrourus (pale-tail damselfish). Observations of fish behaviour in natural conditions showed that individuals substantially reduced distance from refugia and feeding rate and increased resting time at sub-optimal environmental temperatures in winter (average SST = 21 °C) and summer (average SST = 34 °C), while showing high movement and feeding activity in spring (average SST = 27 °C). Diet was dominated by plankton in winter and spring, while fish used both plankton and benthic trophic resources in summer. These findings were corroborated under laboratory conditions: in a replicated aquarium experiment, time away from refugia and activity were significantly higher at 28 °C (i.e. spring temperature conditions) compared to 21 °C (i.e. winter temperature conditions). Our findings suggest that P. trichrourus may have adapted to the Arabian/Persian Gulf environment by downregulating costly activity during winter and summer and upregulating activity and increasing energy stores in spring. Such adaptive behavioural plasticity may be an important factor in the persistence of populations within increasing environmentally variable coral reef ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abram PK, Boivin G, Moiroux J, Brodeur J (2017) Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biol Rev 92:1859–1876

    PubMed  Google Scholar 

  • Allen GR (1991) Damselfishes of the world. Mergus Publishers, Melle, Germany, p 271

    Google Scholar 

  • AGEDI (2016) Final technical report: Regional desalination and climate change (report: CCRG/IO). Abu Dhabi: Local, National, and Regional Climate Change Programme, Abu Dhabi Global Environmental Data Initiative (AGEDI)

  • Al-Rashidi TB, El-Gamily HI, Amos CL, Rakha KA (2009) Sea surface temperature trends in Kuwait Bay, Arabian Gulf. Nat Hazards 50:73–82

    Google Scholar 

  • Albouy C, Leprieur F, Le Loc’h F, Mouquet N, Meynard CN, Douzery EJP, Mouillot D (2015) Projected impacts of climate warming on the functional and phylogenetic components of coastal Mediterranean fish biodiversity. Ecography (Cop) 38:681–689

    Google Scholar 

  • Angilletta MJ (2009) Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press, New York

    Google Scholar 

  • Armstrong JB, Bond MH (2013) Phenotype flexibility in wild fish: Dolly Varden regulate assimilative capacity to capitalize on annual pulsed subsidies. J Anim Ecol 82:966–975

    PubMed  Google Scholar 

  • Beck HJ, Feary DA, Fowler AM, Madin EMP, Booth DJ (2016) Temperate predators and seasonal water temperatures impact feeding of a range expanding tropical fish. Mar Biol 163:1–14

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    PubMed  PubMed Central  Google Scholar 

  • Buchanan JR, Krupp F, Burt JA, Feary DA, Ralph GM, Carpenter KE (2016) Living on the edge: Vulnerability of coral-dependent fishes in the Gulf. Mar Pollut Bull 105:480–488

    CAS  PubMed  Google Scholar 

  • Buchanan JR, Ralph GM, Krupp F, Harwell H, Abdallah M, Abdulqader E, Al-Husaini M, Bishop JM, Burt JA, Choat JH, Collette BB, Feary DA, Hartmann SA, Iwatsuki Y, Kaymaram F, Larson HK, Matsuura K, Motomura H, Munroe T, Russell B, Smith-Vaniz W, Williams J, Carpenter KE (2019) Regional extinction risks for marine bony fishes occurring in the Persian/Arabian Gulf. Biol Conserv 230:10–19

    Google Scholar 

  • Burt JA, Al-Harthi S, Al-Cibahy A (2011a) Long-term impacts of coral bleaching events on the world’s warmest reefs. Mar Environ Res 72:225–229

    CAS  PubMed  Google Scholar 

  • Burt JA, Feary DA, Bauman AG, Usseglio P, Cavalcante GH, Sale PF (2011b) Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J Mar Sci 68:1875–1883

    Google Scholar 

  • Burt JA, Paparella F, Al-Mansoori N, Al-Mansoori A, Al-Jailani H (2019) Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs. https://doi.org/10.1007/s00338-00019-01767-y

    Article  Google Scholar 

  • Cai W, Wang G, Dewitte B, Wu L, Santoso A, Takahashi K, Yang Y, Carréric A, McPhaden MJ (2018) Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564:201–206

    CAS  PubMed  Google Scholar 

  • Candolin U (2018) Adaptedness of Behavior. In: Vonk J, Shackelford T (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham, pp 1–11

    Google Scholar 

  • Catano LB, Rojas MC, Malossi RJ, Peters JR, Heithaus MR, Fourqurean JW, Burkepile DE (2016) Reefscapes of fear: Predation risk and reef hetero-geneity interact to shape herbivore foraging behaviour. J Anim Ecol 85:146–156

    PubMed  Google Scholar 

  • Chase TJ, Nowicki JP, Coker DJ (2018) Diurnal foraging of a wild coral-reef fish Parapercis australis in relation to late-summer temperatures. J Fish Biol 93:153–158

    PubMed  Google Scholar 

  • Cheal AJ, MacNeil MA, Emslie MJ, Sweatman H (2017) The threat to coral reefs from more intense cyclones under climate change. Glob Chang Biol 23:1511–1524

    PubMed  Google Scholar 

  • Claar DC, Szostek L, McDevitt-Irwin JM, Schanze JJ, Baum JK (2018) Global patterns and impacts of El Niño events on coral reefs: A meta-analysis. PLoS One 13:1–22

    Google Scholar 

  • Coles SL, Fadlallah YH (1991) Reef coral survival and mortality at low temperatures in the Arabian Gulf: new species-specific lower temperature limits. Coral Reefs 9:231–237

    Google Scholar 

  • Coles SL (2003) Coral species diversity and environmental factors in the Arabian Gulf and the Gulf of Oman: a comparison to the Indo-Pacific region. Atoll Res Bull 507:1–19

    Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner MF, Allen MR, Andrews T, Beyerle U, Bitz CM, Bony S, Booth BBB (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013 - The physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Intergovernmental panel on climate change, Cambridge University Press, New York, USA, pp 1029–1136

  • Côté IM, Darling ES (2010) Rethinking ecosystem resilience in the face of climate change. PLoS Biol 8:e1000438

    PubMed  PubMed Central  Google Scholar 

  • Day PB, Stuart-Smith RD, Edgar GJ, Bates AE (2018) Species’ thermal ranges predict changes in reef fish community structure during 8 yrs of extreme temperature variation. Divers Distrib 24:1036–1046

    Google Scholar 

  • Dill LM, Fraser AHG (1984) Risk of predation and the feeding behavior of juvenile coho salmon (Oncorhynchus kisutch). Behav Ecol and Sociobiol 16:65–71

    Google Scholar 

  • Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate Change Impacts on Marine Ecosystems. Ann Rev Mar Sci 4:11–37

    PubMed  Google Scholar 

  • Eme J, Bennett WA (2008) Low temperature as a limiting factor for introduction and distribution of Indo-Pacific damselfishes in the eastern United States. J Therm Biol 33:62–66

    Google Scholar 

  • Feary DA, Burt JA, Bauman AG, Usseglio P, Sale PF, Cavalcante GH (2010) Fish communities on the world’s warmest reefs: What can they tell us about the effects of climate change in the future? J Fish Biol 77:1931–1947

    CAS  PubMed  Google Scholar 

  • Figueira WF, Biro P, Booth DJ, Valenzuela VC (2009) Performance of tropical fish recruiting to temperate habitats: Role of ambient temperature and implications of climate change. Mar Ecol Prog Ser 384:231–239

    Google Scholar 

  • Figueira WF, Booth DJ (2010) Increasing ocean temperatures allow tropical fishes to survive overwinter in temperate waters. Glob Chang Biol 16:506–516

    Google Scholar 

  • Folguera G, Bastías DA, Caers J, Rojas JM, Piulachs MD, Bellés X, Bozinovic F (2011) An experimental test of the role of environmental temperature variability on ectotherm molecular, physiological and life-history traits: Implications for global warming. Comp Biochem Physiol - A Mol Integr Physiol 159:242–246

    PubMed  Google Scholar 

  • Fu S-J, Peng J, Killen SS (2018) Digestive and locomotor capacity show opposing responses to changing food availability in an ambush predatory fish. J Exp Biol 221:jeb173187

    PubMed  PubMed Central  Google Scholar 

  • Furey NB, Hinch SG, Mesa MG, Beauchamp DA (2016) Piscivorous fish exhibit temperature-influenced binge feeding during an annual prey pulse. J Anim Ecol 85:1307–1317

    PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    CAS  PubMed  Google Scholar 

  • Gordon TAC, Harding HR, Clever FK, Davidson IK, Windsor FM, Armstrong JD, Bardonnet A, Bergman E, Britton JR, Côté IM, D’Agostino D, Greenberg LA, Harborne AR, Kahilainen KK, Metcalfe NB, Mills SC, Milner NJ, Mittermayer FH, Montorio L, Nedelec SL, Prokkola JM, Rutterford LA, Salvanes AG, Simpson SD, Vainikka A, Pinnegar JK, Santos EM (2018) Fishes in a changing world: learning from the past to promote sustainability of fish populations. J Fish Biol 92:804–827

    CAS  PubMed  Google Scholar 

  • Grizzle RE, Ward KM, AlShihi RMS, Burt JA (2015) Current status of coral reefs in the United Arab Emirates: Distribution, extent, and community structure with implications for management. Mar Pollut Bull 105:515–523

    PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018) Global warming transforms coral reef assemblages. Nature 556:492–496

    CAS  PubMed  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A Special Report of Working Groups I and II of the Intergovern- mental Panel on Climate Change. Cambridge University Press, Cambridge, NY, USA

    Google Scholar 

  • IPCC (2014) Summary for Policy Makers. Clim Chang 2014 Impacts, Adapt Vulnerability - Contrib Work Gr II to Fifth Assess Rep 1–32

  • Johansen JL, Messmer V, Coker DJ, Hoey AS, Pratchett MS (2014) Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish. Glob Chang Biol 20:1067–1074

    CAS  PubMed  Google Scholar 

  • Kaschner K, Kesner-Reyes K, Garilao C, Rius-Barile J, Rees T, Froese R (2016). AquaMaps: predicted range maps for aquatic species. World wide web electronic publication, www.aquamaps.org, Version 08/2016

  • Keith SA, Baird AH, Hobbs J-PA, Woolsey ES, Hoey AS, Fadli N, Sanders NJ (2018) Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat Clim Chang 8:986–991

    Google Scholar 

  • Laffoley D, Baxter JM (2016) Explaining ocean warming: causes, scale, effects and consequences. IUCN, Gland, Switzerland

    Google Scholar 

  • Layton C, Fulton CJ (2014) Status-dependent foraging behaviour in coral reef wrasses. Coral Reefs 33:345–349

    Google Scholar 

  • Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250–260

    PubMed  Google Scholar 

  • Magalhaes IS, Croft GE, Joyce DA (2013) Altering an extended phenotype reduces intraspecific male aggression and can maintain diversity in cichlid fish. PeerJ 1:e209

    PubMed  PubMed Central  Google Scholar 

  • Magalhaes IS, D’Agostino D, Hohenlohe PA, MacColl ADC (2016) The ecology of an adaptive radiation of three-spined stickleback from North Uist, Scotland. Mol Ecol 25:4319–4336

    PubMed  PubMed Central  Google Scholar 

  • McLean S, Persson A, Norin T, Killen SS (2018) Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr Biol 28:1144–1149

    CAS  PubMed  Google Scholar 

  • Munday PL, Crawley NE, Nilsson GE (2009) Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Mar Ecol Prog Ser 388:235–242

    CAS  Google Scholar 

  • Munday PL, McCormick MI, Nilsson GE (2012) Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? J Exp Biol 215:3865–3873

    CAS  PubMed  Google Scholar 

  • Nagelkerken I, Munday PL (2016) Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Glob Chang Biol 22:974–989

    PubMed  Google Scholar 

  • Nakamura Y, Feary DA, Kanda M, Yamaoka K (2013) Tropical fishes dominate temperate reef fish communities within western Japan. PLoS One 8:1–8

    Google Scholar 

  • NASA Goddard space flight center, ocean ecology laboratory, ocean biology processing group (2014) Moderate-resolution imaging spectroradiometer (MODIS) Aqua {Chlorophyll Concentration} Data; NASA OB.DAAC, Greenbelt, MD, USA. Accessed 29 Sept 2017

  • Neuheimer AB, Thresher RE, Lyle JM, Semmens JM (2011) Tolerance limit for fish growth exceeded by warming waters. Nat Clim Chang 1:110–113

    Google Scholar 

  • Nilsson GE, Crawley N, Lunde IG, Munday PL (2009) Elevated temperature reduces the respiratory scope of coral reef fishes. Glob Chang Biol 15:1405–1412

    Google Scholar 

  • Nowicki JP, Miller GM, Munday PL (2012) Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish. J Exp Mar Bio Ecol 412:46–51

    Google Scholar 

  • Paparella F, Xu C, Vaughan GO, Burt JA (2019) Coral bleaching in the Persian/Arabian Gulf is modulated by summer winds. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00205

    Article  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu MN, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214

    PubMed  Google Scholar 

  • Peng Y, Liu X, Huang G, Wei L, Zhang X (2017) Compensatory growth of juvenile brown flounder Paralichthys olivaceus following low temperature treatment for different periods. J Ocean Univ China 16:326–332

    Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    PubMed  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    PubMed  Google Scholar 

  • Pörtner HO, Schulte PM, Wood CM, Schiemer F (2010) Niche Dimensions in Fishes: An Integrative View. Physiol Biochem Zool 83:808–826

    PubMed  Google Scholar 

  • Pratchett MS, Wilson SK, Munday PL (2015) Effects of climate change on coral reef fishes. In: Mora C (ed) Ecology of Fishes on Coral Reefs. Cambridge University Press, Cambridge, pp 127–134

    Google Scholar 

  • Pratchett MS, Thompson CA, Hoey AS, Cowman PF, Wilson SK (2018) Effects of coral bleaching and coral loss on the structure and function of reef fish assemblages. In: van Oppen M, Lough J (eds) Coral Bleaching (pp 265–293). Springer, Cham

    Google Scholar 

  • Randall JE (1995) Coastal Fishes of Oman. University of Hawaii Press, Honolulu

    Google Scholar 

  • Richardson LE, Graham NAJ, Pratchett MS, Eurich JG, Hoey AS (2018) Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob Chang Biol 24:3117–3129

    PubMed  Google Scholar 

  • Riegl BM, Purkis SJ (2012) Coral Reefs of the Gulf: Adaptation to Climatic Extremes in the World’s Hottest Sea. In: Riegl B, Purkis S (eds) Coral Reefs of the World, vol 3. Springer, Dordrecht, pp 1–4

    Google Scholar 

  • Riegl BM, Johnston M, Purkis SJ, Howells E, Burt JA, Steiner SCC, Sheppard CRC, Bauman A (2018) Population collapse dynamics in Acropora downingi, an Arabian/Persian Gulf ecosystem-engineering coral, linked to rising temperature. Glob Chang Biol 24:2447–2462

    PubMed  Google Scholar 

  • Rodgers GG, Donelson JM, McCormick MI, Munday PL (2018) In hot water: sustained ocean warming reduces survival of a low-latitude coral reef fish. Mar Biol 165:1–10

    Google Scholar 

  • Rueda L, Assutí EM, Alvarez-Berastegu D, Hidalgo M (2015) Effect of intra-specific competition, surface chlorophyll and fishing on spatial variation of gadoid’s body condition. Ecosphere 6(10):1–17

    Google Scholar 

  • Rummer JL, Couturier CS, Stecyk JAW, Gardiner NM, Kinch JP, Nilsson GE, Munday PL (2014) Life on the edge: Thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob Chang Biol 20:1055–1066

    PubMed  Google Scholar 

  • Rummer JL, Munday PL (2017) Climate change and the evolution of reef fishes: past and future. Fish Fish 18(1):22–39

    Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Beckeret E (2011), updated monthly. NCEP Climate Forecast System Version 2 (CFSv2) Selected Hourly Time-Series Products. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6N877VB. Accessed 29 Sept 2017

  • Scott M, Heupel M, Tobin A, Pratchett M (2017) A large predatory reef fish species moderates feeding and activity patterns in response to seasonal and latitudinal temperature variation. Sci Rep 7:1–9

    Google Scholar 

  • Sevgili H, Hoşsu B, Emre Y, Kanyilmaz M (2013) Compensatory growth following various time lengths of restricted feeding in rainbow trout (Oncorhynchus mykiss) under summer conditions. J Appl Ichthyol 29:1330–1336

    Google Scholar 

  • Shinn EA (1976) Coral reef recovery in Florida and the Persian Gulf. Environ Geol 1:241–254

    Google Scholar 

  • Shraim R, Dieng MM, Vinu M, Vaughan GO, McParland D, Idaghdour Y, Burt JA (2017) Environmental Extremes Are Associated with Dietary Patterns in Arabian Gulf Reef Fishes. Front Mar Sci 4:285

    Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc B Biol Sci 278:1823–1830

    Google Scholar 

  • Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the Heat on Tropical Animals. Science 320:1296–1297

    CAS  PubMed  Google Scholar 

  • Thornton PK, Ericksen PJ, Herrero M, Challinor AJ (2014) Climate variability and vulnerability to climate change: A review. Glob Chang Biol 20:3313–3328

    PubMed  PubMed Central  Google Scholar 

  • Tuomainen U, Candolin U (2011) Behavioural responses to human-induced environmental change. Biol Rev 86:640–657

    PubMed  Google Scholar 

  • Vaughan GO, Al-Mansoori N, Burt JA (2019) The Arabian Gulf. In: Sheppard C (ed) World Seas: an Environmental Evaluation. Academic Press, Cambridge, pp 1–23

    Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Sen GA, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc R Soc B Biol Sci 281:20140846

    Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Chang 3:78–82

    Google Scholar 

  • Wilkinson CR (1999) Global and local threats to coral reef functioning and existence: Review and predictions. Mar Freshw Res 50:867–878

    Google Scholar 

  • Wong BBM, Candolin U (2015) Behavioral responses to changing environments. Behav Ecol 26:665–673

    Google Scholar 

  • Zhou L, Zeng L, Fu D, Xu P, Zeng S, Tang Q, Chen Q, Chen L, Li G (2016) Fish density increases from the upper to lower parts of the Pearl River Delta, China, and is influenced by tide, chlorophyll-a, water transparency, and water depth. Aquat Ecol 50:59–74

    CAS  Google Scholar 

Download references

Acknowledgements

All research was carried out under approval of the NYU—AD Institutional Animal Care and Use Committee (IACUC protocol No. 16-0005) and according to the University’s animal ethics guidelines. Fish collection was carried with permission of the Environment Agency, Abu Dhabi (protocol No. EAD-TMBS-RP-0). Thanks to the University of Nottingham for support thought the whole study. The authors acknowledge the support of the NYU Abu Dhabi Marinre Biology Core Technology Platform in making this research possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele D’Agostino.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Topic Editor Morgan S. Pratchett

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Agostino, D., Burt, J.A., Reader, T. et al. The influence of thermal extremes on coral reef fish behaviour in the Arabian/Persian Gulf. Coral Reefs 39, 733–744 (2020). https://doi.org/10.1007/s00338-019-01847-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01847-z

Keywords

Navigation