Skip to main content
Log in

Characterization and expression analysis of a mitochondrial heat-shock protein 70 gene from the Antarctic moss Pohlia nutans

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Under stress conditions, the mitochondrial respiratory chain generates reactive oxygen species that cause oxidative damage to lipids, proteins and nucleic acids. Mitochondrial chaperones are essential for repairing denatured proteins in plants confronted with diverse stresses. However, their functions have not been well characterized in lower plants such as bryophytes. Here, we cloned a heat-shock 70 protein gene (designated PnHSP70) from the Antarctic moss Pohlia nutans and investigated its transcription levels under stress conditions. The PnHSP70 cDNA encoded a polypeptide of 678 amino acids with an ATPase domain, a substrate peptide-binding domain and a C-terminal domain. Sequence alignment and phylogenetic analysis showed that PnHSP70 was homologous to other known mitochondrial HSP70 proteins. In addition, subcellular localization analysis in which the transient expression of PnHSP70-green fluorescent protein was observed in Arabidopsis thaliana mesophyll protoplasts revealed that PnHSP70 was targeted to mitochondria. Real-time PCR analysis showed that low or high temperature, salinity, drought or PEG treatments as well as UV-B radiation could induce up-regulation of PnHSP70 expression levels. The plant hormones abscisic acid and jasmonic acid also up-regulated the expression levels of PnHSP70. Together, our results revealed that PnHSP70, as a mitochondrial chaperone, might play an important role in the adaptation of the Antarctic moss P. nutans to the polar environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alder NN, Shen Y, Brodsky JL, Hendershot LM, Johnson AE (2005) The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J Cell Biol 168:389–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alvim FC, Carolino SM, Cascardo JC, Nunes CC, Martinez CA, Otoni WC, Fontes EP (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126:1042–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berli FJ, Fanzone M, Piccoli P, Bottini R (2011) Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. J Agric Food Chem 59:4874–4884

    Article  CAS  PubMed  Google Scholar 

  • Bhyan SB, Minami A, Kaneko Y, Suzuki S, Arakawa K, Sakata Y, Takezawa D (2012) Cold acclimation in the moss Physcomitrella patens involves abscisic acid-dependent signaling. J Plant Physiol 169:137–145

    Article  CAS  PubMed  Google Scholar 

  • Bramley-Alves J, King DH, Robinson RA, Miller RE (2014) Dominating the Antarctic environment: bryophytes in a time of change. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, pp 309–324

    Chapter  Google Scholar 

  • Chinnusamy V, Zhu JH, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Clarke LJ, Robinson SA (2008) Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus. New Phytol 179:776–783

    Article  PubMed  Google Scholar 

  • Convey P, Smith RIL (2006) Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecol 182:1–10

    Google Scholar 

  • Convey P, Stevens MI (2007) Antarctic Biodiversity. Science 317:1877–1878

    Article  CAS  PubMed  Google Scholar 

  • De Los RiosP, Ben-Zvi A, Slutsky O, Azem A, Goloubinoff P (2006) Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci USA 103:6166–6171

    Article  Google Scholar 

  • de Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306

    Article  PubMed  Google Scholar 

  • Dinamarca J, Sandoval-Alvarez A, Gidekel M, Gutiérrez-Morag A (2013) Differentially expressed genes induced by cold and UV-B in Deschampsia antarctica Desv. Polar Biol 36:409–418

    Article  Google Scholar 

  • Dong Y, Dong S, Meng X (2008) Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70 in sea cucumber (Apostichopus japonicus Selenka). Aquaculture 276:179–186

    Article  CAS  Google Scholar 

  • Fu W, Yao J, Wang X, Liu F, Fu G, Duan D (2009) Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Laminaria japonica (Laminariaceae, Phaeophyta). Mar Biotechnol 11:738–747

    Article  CAS  PubMed  Google Scholar 

  • Germot A, Philippe H, Le Guyader H (1996) Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci USA 93:14614–14617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gornall JL, Jónsdóttir IS, Woodin SJ, der Wal RV (2007) Arctic mosses govern below-ground environment and ecosystem processes. Oecologia 153:931–941

    Article  CAS  PubMed  Google Scholar 

  • Horst M, Oppliger W, Rospert S, Schonfeld HJ, Schatz G, Azem A (1997) Sequential action of two hsp70 complexes during protein import into mitochondria. EMBO J 16:1842–1849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huovinen P, Gómez I (2013) Photosynthetic characteristics and UV stress tolerance of Antarctic seaweeds along the depth gradient. Polar Biol 36:1319–1332

    Article  Google Scholar 

  • Kato K, Arikawa T, Imura S, Kanda H (2013) Molecular identification and phylogeny of an aquatic moss species in Antarctic lakes. Polar Biol 36:1557–1568

    Article  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Zhang P, Cong B, Liu C, Lin X, Shen J, Huang X (2010) Molecular cloning and expression analysis of a cytosolic Hsp70 gene from Antarctic ice algae Chlamydomonas sp. ICE-L. Extremophiles 14:329–337

    Article  PubMed  Google Scholar 

  • Liu S, Wang N, Zhang P, Cong B, Lin X, Wang S, Xia G, Huang X (2013) Next-generation sequencing-based transcriptome profiling analysis of Pohlia nutans reveals insight into the stress-relevant genes in Antarctic moss. Extremophiles 17:391–403

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lovelock CE, Jackson AE, Melick DR, Seppelt RD (1995) Reversible photoinhibition in Antarctic moss during freezing and thawing. Plant Physiol 109:955–961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madden LA, Sandström ME, Lovell RJ, McNaughton L (2008) Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids 34:511–516

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Nicolás C, Monte E (2010) Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses. J Plant Physiol 167:659–665

    Article  CAS  PubMed  Google Scholar 

  • Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev 70:222–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newsham KK (2010) The biology and ecology of the liverwort Cephaloziella varians in Antarctica. Antarct Sci 22:131–143

    Article  Google Scholar 

  • Pearce DA (2008) Climate change and the microbiology of the Antarctic Peninsula region. Sci Prog 91:203–217

    Article  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rautenberger R, Wiencke C, Bischof K (2013) Acclimation to UV radiation and antioxidative defence in the endemic Antarctic brown macroalga Desmarestia anceps along a depth gradient. Polar Biol 36:1779–1789

    Article  Google Scholar 

  • Reddy PS, Mallikarjuna G, Kaul T, Chakradhar T, Mishra RN, Sopory SK, Reddy MK (2010) Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol Genet Genomics 283:243–254

    Article  CAS  PubMed  Google Scholar 

  • Renner T, Waters ER (2007) Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes. Cell Stress Chaperon 12:172–185

    Article  CAS  Google Scholar 

  • Reyes M, Corcuera LJ, Cardemil L (2003) Accumulation of HSP70 in Deschampsia antarctica Desv. leaves under thermal stress. Antarct Sci 15:345–352

    Article  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi LX, Theg SM (2010) A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. Plant Cell 22:205–220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shim EH, Kim JI, Bang ES, Heo JS, Lee JS, Kim EY, Lee JE, Park WY, Kim SH, Kim HS, Smithies O, Jang JJ, Jin DI, Seo JS (2002) Targeted disruption of hsp70.1 sensitizes to osmotic stress. EMBO Rep 3:857–861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh J, Dubey AK, Singh RP (2011) Antarctic terrestrial ecosystem and role of pigments in enhanced UV-B radiations. Rev Environ Sci Biotechnol 10:63–77

    Article  Google Scholar 

  • Skotnicki ML, Ninham JA, Selkirk PM (2000) Genetic diversity, mutagenesis and dispersal of Antarctic mosses-a review of progress with molecular studies. Antarct Sci 12:363–373

    Article  Google Scholar 

  • Song W, Lin X, Huang X (2012) Characterization and expression analysis of three cold shock protein (CSP) genes under different stress conditions in the Antarctic bacterium Psychrobacter sp. G. Polar Biol 35:1515–1524

    Article  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Victoria FC, Pereira AB, Costa DP (2009) Composition and distribution of moss formations in the ice-free areas adjoining the Arctowski region, Admiralty Bay, King George Island, Antarctica. Iheringia, Série Botânica 64:81–91

    Google Scholar 

  • Wang S, Zhu X, Yang Y, Yang J, Gu Y, Wei J, Hao R, Boireau P, Cui S (2009) Molecular cloning and characterization of heat shock protein 70 from Trichinella spiralis. Acta Trop 110:46–51

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cui P, Lin L, Shen P, Tang B, Huang YP (2009a) Transcriptional analysis of the hsp70 gene in a haloarchaeon Natrinema sp. J7 under heat and cold stress. Extremophiles 13:669–678

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li Y, Xing D, Gao C (2009b) Characterization of mitochondrial dynamics and subcellular localization of ROS reveal that HsfA2 alleviates oxidative damage caused by heat stress in Arabidopsis. J Exp Bot 60:2073–2091

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liu S, Chen K (2013) Characterization and expression analysis of a glutathione reductase gene from Antarctic moss Pohlia nutans. Plant Mol Biol Rep 31:1068–1076

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Robbie Lewis for assistance in the manuscript editing. This work was financially supported by the National Natural Science Foundation of China (41206176 and 40906103), Chinese Polar Environment Comprehensive Investigation and Assessment Programmes (CHINARE2012-01-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, J., Cong, B. et al. Characterization and expression analysis of a mitochondrial heat-shock protein 70 gene from the Antarctic moss Pohlia nutans . Polar Biol 37, 1145–1155 (2014). https://doi.org/10.1007/s00300-014-1508-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1508-8

Keywords

Navigation