Skip to main content
Log in

MYB transcription factors—master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Phenylpropanoids, the largest class of natural products including flavonoids, anthocyanins, monolignols and tannins perform multiple functions ranging from photosynthesis, nutrient uptake, regulating growth, cell division, maintenance of redox homeostasis and biotic and abiotic stress responses. Being sedentary life forms, plants possess several regulatory modules that increase their performance in varying environments by facilitating activation of several signaling cascades upon perception of developmental and stress signals. Of the various regulatory modules, those involving MYB transcription factors are one of the extensive groups involved in regulating the phenylpropanoid metabolic enzymes in addition to other genes. R2R3 MYB transcription factors are a class of plant-specific transcription factors that regulate the expression of structural genes involved in anthocyanin, flavonoid and monolignol biosynthesis which are indispensable to several developmental pathways and stress responses. The aim of this review is to present the regulation of the phenylpropanoid pathway by MYB transcription factors via Phospholipase D/phosphatidic acid signaling, downstream activation of the structural genes, leading to developmental and/or stress responses. Specific MYB transcription factors inducing or repressing specific structural genes of anthocyanin, flavonoid and lignin biosynthetic pathways are discussed. Further the roles of MYB in activating biotic and abiotic stress responses are delineated. While several articles have reported the role of MYB’s in stress responses, they are restricted to two or three specific MYB factors. This review is a consolidation of the diverse roles of different MYB transcription factors involved both in induction and repression of anthocyanin, flavonoid, and lignin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T et al (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agarwal M, Hao Y, Kapoor A et al (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Ahmad Z, Dajani WWA, Paleologou M, Xu CC (2020) Sustainable process for the depolymerization/oxidation of softwood and hardwood kraft lignins using hydrogen peroxide under ambient conditions. Molecules 25(10):2329. https://doi.org/10.3390/molecules25102329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert NW, Davies KM, Lewis DH et al (2014) A Conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SS, Noordin L, Bakar RA et al (2021) Current Updates on potential role of flavonoids in hypoxia/reoxygenation cardiac injury model. Cardiovasc Toxicol 21:605–618

    Article  CAS  PubMed  Google Scholar 

  • Allan AC, Espley RV (2018) MYBs drive novel consumer traits in fruits and vegetables. Trends Plant Sci 23:693–705

    Article  CAS  PubMed  Google Scholar 

  • Amalraj A, Pius A, Gopi S, Gopi S (2017) Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. Afr J Tradit Complement Altern Med 7:205–233

    Article  Google Scholar 

  • Anand David AV, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10:84–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Anwar M, Chen L, Xiao Y et al (2021) Recent Advanced Metabolic and Genetic Engineering of Phenylpropanoid Biosynthetic Pathways. Int J Mol Sci 22(17):9544. https://doi.org/10.3390/ijms22179544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya SS, Rookes JE, Cahill DM, Lenka SK (2021) Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Adv Tradit Med 21:1–17

    Article  CAS  Google Scholar 

  • Aziz N, Kim M-Y, Cho JY (2018) Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol 225:342–358

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn RV, Peter Constabel C (2011) Tannins in plant-herbivore interactions. Phytochemistry 72:1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Bardaweel SK, Gul M, Alzweiri M et al (2018) Reactive oxygen species: the dual role in physiological and pathological conditions of the human body. Eurasian J Med 50:193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargmann BOR (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9(5):515

    Article  CAS  PubMed  Google Scholar 

  • Battat M, Eitan A, Rogachev I et al (2019) A MYB triad controls primary and phenylpropanoid metabolites for pollen coat patterning. Plant Physiol 180:87–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Zvi MM, Negre-Zakharov F, Masci T et al (2008) Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnol J 6:403–415

    Article  CAS  PubMed  Google Scholar 

  • Bhakkiyalakshmi E, Shalini D, Sekar TV et al (2014) Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2. Br J Pharmacol 171:1747–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia R, Dalton S, Roberts LA et al (2019) Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content. Sci Rep 9:8800

    Article  PubMed  PubMed Central  Google Scholar 

  • Borevitz JO, Xia Y, Blount J et al (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Li K, Li Y et al (2020) MYB transcription factors as regulators of secondary metabolism in plants. Biology 9(3):61. https://doi.org/10.3390/biology9030061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappellini F, Marinelli A, Toccaceli M et al (2021) Anthocyanins: from mechanisms of regulation in plants to health benefits in foods. Front Plant Sci 12:748049

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan EKF, Rowe HC, Corwin JA et al (2011) Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biol 9:e1001125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Hong X, Zhang H et al (2005) Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 43:273–283

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Zhang K, Khurshid M et al (2019a) MYB transcription repressors regulate plant secondary metabolism. Crit Rev Plant Sci 38:159–170

    Article  CAS  Google Scholar 

  • Chen Y, Li C, Zhang B et al (2019b) The Role of the Late Embryogenesis-Abundant (LEA) Protein family in development and the abiotic stress response: a comprehensive expression analysis of potato. Genes 10(2):148. https://doi.org/10.3390/genes10020148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun HJ, Baek D, Cho HM et al (2019) Lignin biosynthesis genes play critical roles in the adaptation of plants to high-salt stress. Plant Signal Behav 14:1625697

    Article  PubMed  PubMed Central  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A et al (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Cone KC, Burr FA, Burr B (1986) Molecular analysis of the maize anthocyanin regulatory locus C1. Proc Natl Acad Sci 83:9631–9635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deeba F, Sultana T, Javaid B et al (2017) Molecular Characterization of a MYB Protein from Oryza sativa for its Role in Abiotic Stress Tolerance. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2017160352

    Article  Google Scholar 

  • Denekamp M, Smeekens SC (2003) Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol 132:1415–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev 2016:1245049

    PubMed  PubMed Central  Google Scholar 

  • Díaz-Quiroz DC, Cardona-Félix CS, Viveros-Ceballos JL et al (2018) Synthesis, biological activity and molecular modelling studies of shikimic acid derivatives as inhibitors of the shikimate dehydrogenase enzyme of Escherichia coli. J Enzyme Inhib Med Chem 33:397–404

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle AA, Stephens JC (2019) A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 139:104405

    Article  CAS  PubMed  Google Scholar 

  • Du H, Feng B-R, Yang S-S et al (2012a) The R2R3-MYB transcription factor gene family in maize. PLoS ONE 7:e37463

    Article  PubMed  PubMed Central  Google Scholar 

  • Du H, Yang S-S, Liang Z et al (2012b) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol 12:106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • El-Maarouf-Bouteau H, Sajjad Y, Bazin J et al (2015) Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. Plant Cell Environ 38:364–374

    Article  CAS  PubMed  Google Scholar 

  • Endler A, Kesten C, Schneider R et al (2015) A Mechanism for sustained cellulose synthesis during salt stress. Cell 162:1353–1364

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 184:39–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan L, Wang Y, Xu L et al (2020) A genome-wide association study uncovers a critical role of the RsPAP2 gene in red-skinned Raphanus sativus L. Hortic Res. https://doi.org/10.1038/s41438-020-00385-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Fornalé S, Shi X, Chai C et al (2010) ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux. Plant J 64:633–644

    Article  PubMed  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:e0152

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • González-Mendoza VM, Sánchez-Sandoval ME, Castro-Concha LA, Teresa Hernández-Sotomayor SM (2021) Phospholipases C and D and their role in biotic and abiotic stresses. Plants 10:921

    Article  PubMed  PubMed Central  Google Scholar 

  • Gotter A (2017) Polyphenols Food List: Seasonings, Berries, and More. https://www.healthline.com/health/polyphenols-foods. Accessed 25 Nov 2021

  • He J, Liu Y, Yuan D et al (2020) An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc Natl Acad Sci U S A 117:271–277

    Article  CAS  PubMed  Google Scholar 

  • Hejazi J, Ghanavati M, Hejazi E et al (2020) Habitual dietary intake of flavonoids and all-cause and cause-specific mortality: Golestan cohort study. Nutr J 19:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himmelbach A, Hoffmann T, Leube M et al (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Zhao J, Guo L et al (2016) Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 62:55–74

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Khaldun ABM, Chen J et al (2016) A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional chinese medicinal plant Epimedium sagittatum. Front Plant Sci 7:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Jouad EM, Larcher G, Allain M et al (2001) Synthesis, structure and biological activity of nickel(II) complexes of 5-methyl 2-furfural thiosemicarbazone. J Inorg Biochem 86:565–571

    Article  CAS  PubMed  Google Scholar 

  • Jung C, Seo JS, Han SW et al (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagale S, Rozwadowski K (2011) EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6:141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpinska B, Karlsson M, Srivastava M et al (2004) MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Mol Biol 56:255–270

    Article  CAS  PubMed  Google Scholar 

  • Katiyar A, Smita S, Lenka SK et al (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 13:1–19

    Article  Google Scholar 

  • Kim JK, Park SU (2020) Recent studies on kaempferol and its biological and pharmacological activities. EXCLI J 19:627–634

    PubMed  PubMed Central  Google Scholar 

  • Kim CY, Ahn YO, Kim SH et al (2010) The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system. Physiol Plant 139:229–240

    CAS  PubMed  Google Scholar 

  • Koeduka T, Fridman E, Gang DR et al (2006) Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc Natl Acad Sci U S A 103:10128–10133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komis G, Illés P, Beck M, Šamaj J (2011) Microtubules and mitogen-activated protein kinase signalling. Curr Opin Plant Biol 14:650–657

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Goel N (2019) Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep (amst) 24:e00370

    Article  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16

    Google Scholar 

  • LaFountain AM, Yuan Y-W (2021) Repressors of anthocyanin biosynthesis. New Phytol 231:933–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17

    Article  CAS  Google Scholar 

  • Legay S, Sivadon P, Blervacq A-S et al (2010) EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol 188:774–786

    Article  CAS  PubMed  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul J-M et al (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Li S (2014) Transcriptional control of flavonoid biosynthesis. Plant Signal Behav 9:e27522

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Fan R, Guo S et al (2019) The Arabidopsis MYB transcription factor, MYB111 modulates salt responses by regulating flavonoid biosynthesis. Environ Exp Bot 166:103807

    Article  CAS  Google Scholar 

  • Liang Y-K, Dubos C, Dodd IC et al (2005) AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol 15:1201–1206

    Article  CAS  PubMed  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K et al (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Luo L, Zheng L (2018a) Lignins: biosynthesis and biological functions in plants. Int J Mol Sci 19(2):335. https://doi.org/10.3390/ijms19020335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tikunov Y, Schouten RE (2018b) Anthocyanin biosynthesis and degradation mechanisms in vegetables: a review. Front Chem 6:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu P, Zhang X, Zhang F et al (2021) A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. Mol Plant 14:1088–1103

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Yuan D, Zhang C et al (2022) Liquiritin Alleviates depression-like behavior in CUMS mice by inhibiting oxidative stress and NLRP3 inflammasome in hippocampus. Evid Based Complement Alternat Med 2022:7558825

    PubMed  PubMed Central  Google Scholar 

  • López-Munguía A, Hernández-Romero Y, Pedraza-Chaverri J et al (2011) Phenylpropanoid glycoside analogues: enzymatic synthesis, antioxidant activity and theoretical study of their free radical scavenger mechanism. PLoS ONE 6:e20115

    Article  PubMed  PubMed Central  Google Scholar 

  • Luca VD, De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    Article  PubMed  Google Scholar 

  • Ma H, Yang T, Li Y et al (2021) The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. Plant Cell 33:3309–3330

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino Acid biosynthesis in plants. Annu Rev Plant Biol 63(1):73. https://doi.org/10.1146/annurev-arplant-042811-105439

    Article  CAS  PubMed  Google Scholar 

  • Maru GB, Kumar G, Ghantasala S, Tajpara P (2014) Polyphenol-Mediated In Vivo Cellular Responses during Carcinogenesis. In: Watson R, Preedy V, Zibadi S (eds) Polyphenols in human health and disease, 1st edn. Elsevier, pp 1141–1179

    Chapter  Google Scholar 

  • McCarthy RL, Zhong R, Fowler S et al (2010) The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant Cell Physiol 51:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • McGee JD, Roe JL, Sweat TA et al (2003) Rice phospholipase D isoforms show differential cellular location and gene induction. Plant Cell Physiol 44:1013–1026

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A (2020) MYB30 links the ROS wave to systemic acclimation. In: Plantae. https://plantae.org/myb30-links-the-ros-wave-to-systemic-acclimation/. Accessed 29 Mar 2022

  • Milkovic L, Gasparovic AC, Cindric M et al (2019) Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells 8(8):793. https://doi.org/10.3390/cells8080793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minatel IO, Borges CV, Ferreira MI et al (2017) phenolic compounds: functional properties, impact of processing and bioavailability. Phenol Compd Biol Activity 8:1–24

    Google Scholar 

  • Moaddel R, Rossi M, Rodriguez S et al (2022) Identification of gingerenone A as a novel senolytic compound. PLoS ONE 17:e0266135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyano E, Martínez-Garcia JF, Martin C (1996) Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis in antirrhinum flowers. Plant Cell 8:1519–1532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK (2019) Quality control and evaluation of herbal drugs: evaluating natural products and traditional medicine, 1st edn. Elsevier

    Google Scholar 

  • Naing AH, Kim CK (2018) Roles of R2R3-MYB transcription factors in transcriptional regulation of anthocyanin biosynthesis in horticultural plants. Plant Mol Biol 98:1–18

    Article  CAS  PubMed  Google Scholar 

  • Naing AH, Ai TN, Lim KB et al (2018) Overexpression of from snapdragon enhances anthocyanin accumulation and abiotic stress tolerance in transgenic tobacco. Front Plant Sci 9:1070

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman LJ, Perazza DE, Juda L, Campbell MM (2004) Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype. Plant J 37:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nieman DC, Mitmesser SH (2017) Potential impact of nutrition on immune system recovery from heavy exertion: a metabolomics perspective. Nutrients 9(5):513. https://doi.org/10.3390/nu9050513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

    Article  CAS  PubMed  Google Scholar 

  • Nisar MF, Khadim M, Rafiq M et al (2021) Pharmacological Properties and health benefits of eugenol: a comprehensive review. Oxid Med Cell Longev 2021:2497354

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogata K, Kanei-Ishii C, Sasaki M et al (1996) The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nat Struct Biol 3:178–187

    Article  CAS  PubMed  Google Scholar 

  • Omer S, Kumar S, Khan BM (2013) Over-expression of a subgroup 4 R2R3 type MYB transcription factor gene from Leucaena leucocephala reduces lignin content in transgenic tobacco. Plant Cell Rep 32:161–171

    Article  CAS  PubMed  Google Scholar 

  • Opara EI, Chohan M (2014) Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int J Mol Sci 15:19183–19202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-Activated Protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otręba M, Kośmider L, Rzepecka-Stojko A (2021) Polyphenols’ cardioprotective potential: review of rat fibroblasts as well as rat and human cardiomyocyte cell lines research. Molecules 26(4):774. https://doi.org/10.3390/molecules26040774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • OuYang Q, Duan X, Li L, Tao N (2019) Cinnamaldehyde exerts its antifungal activity by disrupting the cell wall integrity of geotrichum citri-aurantii. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00055

    Article  PubMed  PubMed Central  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci. https://doi.org/10.1017/jns.2016.41

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Pappi P, Nikoloudakis N, Fanourakis D et al (2021) Differential triggering of the phenylpropanoid biosynthetic pathway key genes transcription upon cold stress and viral infection in tomato leaves. Horticulturae 7:448

    Article  Google Scholar 

  • Patel K, Patel DK (2021) Health beneficial potential of pectolinarigenin on human diseases: An updated review of medicinal importance and pharmacological activity. Nat Prod J 11:3–12

    CAS  Google Scholar 

  • Patzlaff A, McInnis S, Courtenay A et al (2003) Characterisation of a pine MYB that regulates lignification. Plant J 36:743–754

    Article  CAS  PubMed  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U et al (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penfield S, Meissner RC, Shoue DA et al (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13:2777–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poljsak B, Šuput D, Milisav I (2013) Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. https://doi.org/10.1155/2013/956792

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu T, Wu D, Yang L et al (2018) Exploring the mechanism of flavonoids through systematic bioinformatics analysis. Front Pharmacol 9:918

    Article  PubMed  PubMed Central  Google Scholar 

  • Quattrocchio F, Wing JF, Leppen HTC et al (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5(11):1497–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalingam M, Kim H, Lee Y, Lee Y-I (2018) Phytochemical and pharmacological role of liquiritigenin and isoliquiritigenin from radix glycyrrhizae in human health and disease models. Front Aging Neurosci 10:348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes JL, Chua N-H (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Sahoo BC, Sahoo S, Nayak S, Kar B (2021) Pharmacological activity and biochemical interaction of zingerone: a flavour additive in spice food. Plant Sci Today 9(1):81–88

    Google Scholar 

  • Saini RK, Shetty NP, Giridhar P, Ravishankar GA (2012) Rapid in vitro regeneration method for Moringa oleifera and performance evaluation of field grown nutritionally enriched tissue cultured plants. 3 Biotech 2:187–192

    Article  PubMed Central  Google Scholar 

  • Salehi B, Machin L, Monzote L et al (2020) Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega 5:11849–11872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Pujante PJ, Borja-Martínez M, Pedreño MÁ, Almagro L (2017) Biosynthesis and bioactivity of glucosinolates and their production in plant in vitro cultures. Planta 246:19–32

    Article  PubMed  Google Scholar 

  • Santos EL, Sales Maia BHL, Ferriani AP, Teixeira SD (2017) Flavonoids: classification, biosynthesis and chemical ecology. Flavonoids Biosynth Human Health. 13:78–94

    Google Scholar 

  • Santos BCS, Pires AS, Yamamoto CH et al (2018) Methyl chavicol and its synthetic analogue as possible antioxidant and antilipase agents based on the and in silico assays. Oxid Med Cell Longev 2018:2189348

    Article  PubMed  PubMed Central  Google Scholar 

  • Semwal RB, Semwal DK, Combrinck S, Viljoen AM (2015) Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 117:554–568

    Article  CAS  PubMed  Google Scholar 

  • Seo PJ, Xiang F, Qiao M et al (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Lee SB, Suh MC et al (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Shahzad B, Rehman A et al (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452. https://doi.org/10.3390/molecules24132452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Sun T, Pan Q et al (2019) Rr MYB 5- and Rr MYB 10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa. Plant Biotechnol J 17:2078–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields HJ, Traa A, Van Raamsdonk JM (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.628157

    Article  PubMed  PubMed Central  Google Scholar 

  • Singla RK, Dubey AK, Garg A et al (2019) Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int 102:1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Solano R, Nieto C, Avila J et al (1995) Dual DNA binding specificity of a petal epidermis-specific MYB transcription factor (MYB.Ph3) from Petunia hybrida. EMBO J 14:1773–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soma F, Takahashi F, Yamaguchi-Shinozaki K, Shinozaki K (2021) Cellular phosphorylation signaling and gene expression in drought stress responses: ABA-dependent and ABA-independent regulatory systems. Plants 10(4):756. https://doi.org/10.3390/plants10040756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonbol F-M, Fornalé S, Capellades M et al (2009) The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana. Plant Mol Biol 70:283–296

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol. https://doi.org/10.1016/s1369-5266(00)00199-0

    Article  PubMed  Google Scholar 

  • Suganya N, Bhakkiyalakshmi E, Sarada DVL, Ramkumar KM (2016) Reversibility of endothelial dysfunction in diabetes: role of polyphenols. Br J Nutr 116:223–246

    Article  CAS  PubMed  Google Scholar 

  • Supriya YNR, Yadav RC, Singh D (2006) Isolation of biologically active RNA for generating myb transcription factor cDNAs in Brassica species. Brassica 8:95–98

    CAS  Google Scholar 

  • Tamagnone L, Merida A, Parr A et al (1998) The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Q, Wang X, Li C et al (2013) Functional characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved in the regulation of lignin biosynthesis during wood formation. PLoS ONE 8:e76369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari P, Indoliya Y, Chauhan AS et al (2020) Over-expression of rice R1-type MYB transcription factor confers different abiotic stress tolerance in transgenic Arabidopsis. Ecotoxicol Environ Saf 206:111361

    Article  CAS  PubMed  Google Scholar 

  • Tzin V, Galili G (2010) The biosynthetic pathways for shikimate and aromatic amino acids in arabidopsis thaliana. Arabidopsis Book 8:e0132

    Article  PubMed  PubMed Central  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the Conserved MYB recognition sequence. Plant Cell 5:1529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vázquez-Vuelvas OF, Cervantes-Chávez JA, Delgado-Virgen FJ et al (2021) Fungal bioprocessing of lignocellulosic materials for biorefinery. Recent Adv Microbial Biotechnol. https://doi.org/10.1016/B978-0-12-822098-6.00009-4

    Article  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3(1):2

    Article  CAS  PubMed  Google Scholar 

  • Walter M, Marchesan E (2011) Phenolic compounds and antioxidant activity of rice. Braz Arch Biol Technol 54:371–377

    Article  CAS  Google Scholar 

  • Wang L, Ma Q (2018) Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacol Ther 190:105–127

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang L, Chen W (2011) Plant cortical microtubules are putative sensors under abiotic stresses. Biochemistry 76:320–326

    CAS  PubMed  Google Scholar 

  • Wang S, Zhang C, Yang G, Yang Y (2014) Biological properties of 6-gingerol: a brief review. Nat Prod Commun 9:1027–1030

    CAS  PubMed  Google Scholar 

  • Wang L, Lu W, Ran L et al (2019) R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. Plant J 99:733–751

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Luo Q, Li Y et al (2020) Structural insights into target DNA recognition by R2R3-MYB transcription factors. Nucleic Acids Res 48:460–471

    CAS  PubMed  Google Scholar 

  • Wei X, Shan T, Hong Y et al (2017) TaPIMP2, a pathogen-induced MYB protein in wheat, contributes to host resistance to common root rot caused by Bipolaris sorokiniana. Sci Rep 7:1754

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkins O, Nahal H, Foong J et al (2009) Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol 149:981–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Zhou H, Wang Y et al (2021) How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice. The Crop Journal 9:598–608

    Article  Google Scholar 

  • Xiao R, Zhang C, Guo X et al (2021) MYB Transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. Int J Mol Sci 22(7):3560. https://doi.org/10.3390/ijms22073560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Zhang J, Tschaplinski TJ et al (2018) Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01427

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Zhang D, Hu J et al (2009) Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinform 10(Suppl 11):S3

    Article  Google Scholar 

  • Xu F, Ning Y, Zhang W et al (2014) An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba. Funct Integr Genom 14:177–189

    Article  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Xu Z-S, Yang Q-Q, Feng K et al (2020) DcMYB113, a root-specific R2R3-MYB, conditions anthocyanin biosynthesis and modification in carrot. Plant Biotechnol J 18:1585–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Shen M, Han Y, Diao H (2021) Effects of ellagic acid supplementation on jejunal morphology, digestive enzyme activities, antioxidant capacity, and microbiota in mice. Front Microbiol 12:793576

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamazoe Y, Mitsumori K (2016) Assessment of Nongenotoxic Mechanisms in Carcinogenicity Test of Chemicals; Quinone, Quinone Imine, and Quinone Methide as Examples. In: Nohmi T, Shoji F (eds) Thresholds of Genotoxic Carcinogens, 1st edn. Academic Press, pp 171–192

    Chapter  Google Scholar 

  • Yan H, Pei X, Zhang H et al (2021) MYB-mediated regulation of anthocyanin biosynthesis. Int J Mol Sci. https://doi.org/10.3390/ijms22063103

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Sweetman JP, Amirsadeghi S et al (2001) Novel anther-specific myb genes from tobacco as putative regulators of phenylalanine ammonia-lyase expression. Plant Physiol 126:1738–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Xu Z, Song J et al (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19:534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Zhang L, Liao P et al (2020) Impact of gallic acid on gut health: focus on the gut microbiome, immune response, and mechanisms of action. Front Immunol 11:580208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H et al (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  PubMed  Google Scholar 

  • Yi L-T, Li C-F, Zhan X et al (2010) Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog Neuropsychopharmacol Biol Psychiatry 34:1223–1228

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Zhang Y, Zhang L et al (2021) Regulation of MYB transcription factors of anthocyanin synthesis in lily flowers. Front Plant Sci 12:761668

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Guo C, Shi H et al (2022) Genome-wide comparative analysis of the R2R3-MYB gene family in five solanaceae species and identification of members regulating carotenoid biosynthesis in wolfberry. Int J Mol Sci 23:2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J-Y, Ha JY, Kim K-M et al (2015) Anti-Inflammatory activities of licorice extract and its active compounds, glycyrrhizic acid, liquiritin and liquiritigenin, in BV2 cells and mice liver. Molecules 20:13041–13054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Sheng J, Zhu F et al (2020) Genetic, transcriptional, and regulatory landscape of monolignol biosynthesis pathway in Miscanthus × giganteus. Biotechnol Biofuels. https://doi.org/10.1186/s13068-020-01819-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Zha J, Wu X, Gong G, Koffas MAG (2019) Pathway enzyme engineering for flavonoid production in recombinant microbes. Metab Eng Commun 9:e00104

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A 101:9508–9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zou Z, Gong P et al (2011) Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol Lett 33:403–409

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao G, Jia J et al (2012) Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J Exp Bot 63:203–214

    Article  PubMed  Google Scholar 

  • Zhang Q, Hao R, Xu Z et al (2017a) Isolation and functional characterization of a R2R3-MYB regulator of Prunus mume anthocyanin biosynthetic pathway. Plant Cell. Tissue Organ Cult (PCTOC) 131:417–429

    Article  CAS  Google Scholar 

  • Zhang L-L, Zhang L-F, Xu J-G, Hu Q-P (2017b) Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens. Food Nutr Res 61:1353356

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Lee C, Zhou J et al (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong C, Tang Y, Pang B et al (2020) The R2R3-MYB transcription factor GhMYB1a regulates flavonol and anthocyanin accumulation in Gerbera hybrida. Hortic Res. https://doi.org/10.1038/s41438-020-0296-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye Z-H (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Sun Z, Wang C et al (2015) Changing a conserved amino acid in R2R3-MYB transcription repressors results in cytoplasmic accumulation and abolishes their repressive activity in Arabidopsis. Plant J 84:395–403

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Sun Z, Ding M et al (2017) FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum. New Phytol 216:814–828

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, He Y, Li J et al (2020) CBFs function in anthocyanin biosynthesis by interacting with MYB113 in eggplant (Solanum melongena L.). Plant Cell Physiol 61:416–426

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Shan H, Chen S et al (2013) The Heterologous expression of the chrysanthemum R2R3-MYB transcription factor CmMYB1 alters lignin composition and represses flavonoid synthesis in Arabidopsis thaliana. PLoS ONE 8:e65680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-H, Xu J, Chang W-J, Zhang Z-L (2015) Isolation and molecular characterization of 1-aminocyclopropane-1-carboxylic acid synthase genes in Hevea brasiliensis. Int J Mol Sci 16:4136–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Guan Y, Zhang Z, Song A, Chen S, Jiang J, Chen F (2020) CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in chrysanthemum. Plant Physiol Biochem 149:217–224

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No fund was recieved in support of the article.

Author information

Authors and Affiliations

Authors

Contributions

Author contribution statement

SP performed the literature search and wrote the manuscript. DVLS conceived the idea, provided an intellectual input for organization of information and revision of the manuscript. Both authors revised the article and approved of the version to be submitted.

Corresponding author

Correspondence to Dronamraju V. L. Sarada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratyusha, D.S., Sarada, D.V.L. MYB transcription factors—master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Rep 41, 2245–2260 (2022). https://doi.org/10.1007/s00299-022-02927-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02927-1

Keywords

Navigation