Skip to main content
Log in

Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This work provides the bioinformatics, expression pattern and functional analyses of cryptochrome 1a from sweet sorghum (SbCRY1a), together with an exploration of the signaling mechanism mediated by SbCRY1a.

Abstract

Sweet sorghum [Sorghum bicolor (L.) Moench] is considered to be an ideal candidate for biofuel production due to its high efficiency of photosynthesis and the ability to maintain yield under harsh environmental conditions. Blue light receptor cryptochromes regulate multiple aspects of plant growth and development. Here, we reported the function and signal mechanism of sweet sorghum cryptochrome 1a (SbCRY1a) to explore its potential for genetic improvement of sweet sorghum varieties. SbCRY1a transcripts experienced almost 24 h diurnal cycling; however, its protein abundance showed no oscillation. Overexpression of SbCRY1a in Arabidopsis rescued the phenotype of cry1 mutant in a blue light-specific manner and regulated HY5 accumulation under blue light. SbCRY1a protein was present in both nucleus and cytoplasm. The photoexcited SbCRY1a interacted directly with a putative RING E3 ubiquitin ligase constitutive photomorphogenesis 1 (COP1) from sweet sorghum (SbCOP1) instead of SbSPA1 to suppress SbCOP1–SbHY5 interaction responding to blue light. These observations indicate that the function and signaling mechanism of cryptochromes are basically conservative between monocotyledons and dicotyledons. Moreover, SbCRY1a-overexpressed transgenic Arabidopsis showed oversensitive to abscisic acid (ABA) and salinity. The ABA-responsive gene ABI5 was up-regulated evidently in SbCRY1a transgenic lines, suggesting that SbCRY1a might regulate ABA signaling through the HY5-ABI5 regulon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ang LH, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng XW (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of arabidopsis development. Mol Cell 1:213–222

    Article  CAS  PubMed  Google Scholar 

  • Ba ANN, Pogoutse A, Provart N, Moses AM (2009) NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC 10:202

    Google Scholar 

  • Barrero JM, Downie AB, Xu Q, Gubler F (2014) A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination. Plant Cell 26:1094–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer A, Hollunder J, Nasheuer HP, Wilhelm T (2004) Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Arch Dis Child 3:976–979

    Google Scholar 

  • Blasing OE, Gibon Y, Gunther M, Hohne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR, Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell 17:3257–3281

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  Google Scholar 

  • Brautigam CA, Smith BS, Ma Z, Palnitkar M, Tomchick DR, Machius M, Deisenhofer J (2004) Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc Natl Acad Sci USA 101:12142–12147

  • Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad M (2006) Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 224:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Cashmore AR, Ahmad M (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Article  PubMed  Google Scholar 

  • Chatterjee M, Sharma P, Khurana JP (2006) Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation. Plant Physiol 141:61–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng XW, Xiong L (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci 105:4495–4500

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J Cell Mol Biol 16:735–743

    Article  CAS  Google Scholar 

  • Corbesier L, Coupland G (2006) The quest for florigen: a review of recent progress. J Exp Bot 57:3395–3403

    Article  CAS  PubMed  Google Scholar 

  • Danon A, Coll NS, Apel K (2006) Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana. Proc Natl Acad Sci USA 103:17036–17041

  • Devlin PF, Kay SA (2000) Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12:2499–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang X, Zhang M, Bian M, Deng W, Zuo Z, Yang Z, Zhong D, Lin C (2015) Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. Proc Natl Acad Sci USA 112:9135–9140

  • Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor Cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279

  • Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    Article  CAS  PubMed  Google Scholar 

  • Kanai S, Kikuno R, Toh H, Ryo H, Todo T (1997) Molecular evolution of the photolyase-blue-light photoreceptor family. J Mol Evol 45:535–548

    Article  CAS  PubMed  Google Scholar 

  • Kleine T, Kindgren P, Benedict C, Hendrickson L, Strand Å (2007) Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiol 144:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–593

    Article  CAS  PubMed  Google Scholar 

  • Laubinger S, Fittinghoff K, Hoecker U (2004) The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16:2293–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Liao F (1992) Sweet sorghum and its utilization. Science Press, Beijing

    Google Scholar 

  • Li YY, Mao K, Zhao C, Zhang RF, Zhao XY, Zhang HL, Shu HR, Zhao YJ (2013a) Molecular cloning of cryptochrome 1 from apple and its functional characterization in Arabidopsis. PPB 67:169–177

    PubMed  Google Scholar 

  • Li YY, Mao K, Zhao C, Zhao XY, Zhang RF, Zhang HL, Shu HR, Hao YJ (2013b) Molecular cloning and functional analysis of a blue light receptor gene MdCRY2 from apple (Malus domestica). Plant Cell Rep 32:555–566

    Article  PubMed  Google Scholar 

  • Lian HL, He SB, Zhang YC, Zhu DM, Zhang JY, Jia KP, Sun SX, Li L, Yang HQ (2011) Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev 25:1023–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci 95:2686–2690

  • Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322:1535–1539

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zuo Z, Liu H, Liu X, Lin C (2011) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25:1029–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu MJ, Wu SH, Chen HM, Wu SH (2012) Widespread translational control contributes to the regulation of Arabidopsis photomorphogenesis. Mol Syst Biol 8:566–566

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li X, Li K, Liu H, Lin C (2013) Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis. Plos Genetics 9:2184–2196

    Google Scholar 

  • Lopezmolina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98:4782–4787

  • Ma D, Li X, Guo Y, Chu J, Fang S, Yan C, Noel JP, Liu H (2016) Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci 113(1):224–229

  • Malhotra K, Baer M, Li YF, Sancar GB, Sancar A (1992) Identification of chromophore binding domains of yeast DNA photolyase. J Biol Chem 267:2909–2914

    CAS  PubMed  Google Scholar 

  • Malhotra K, Kim ST, Batschauer A, Dawut L, Sancar A (1995) Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but Lack DNA repair activity. BioChemistry 34:6892–6899

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Zhang Y, Sang Y, Li Q, Yang H (2005) A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102:12270–12275

  • Mao K, Jiang L, Bo W, Xu F, Wu R (2014) Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis. PloS One 9:e115201

    Article  PubMed  PubMed Central  Google Scholar 

  • Más P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408:207–211

    Article  PubMed  Google Scholar 

  • Matsumoto N, Hirano T, Iwasaki T, Yamamoto N (2003) Functional analysis and intracellular localization of rice cryptochromes. Plant Physiol 133:1494–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcnellis TW, Arnim AG, Von Deng XW (1994) Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6:1391–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Li H, Wang Q, Liu B, Lin C (2013) Blue light-dependent interaction between cryptochrome 2 and CIB1 regulates transcription and leaf senescence in soybean. Plant Cell 25:4405–4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mockler TC, Guo H, Yang H, Duong H, Lin C (1999) Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126:2073–2082

    CAS  PubMed  Google Scholar 

  • Ninu L, Ahmad M, Miarelli C, Cashmore AR, Giuliano G (1999) Cryptochrome 1 controls tomato development in response to blue light. Plant J Cell Mol Biol 18:551–556

    Article  CAS  Google Scholar 

  • Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Kai CB, Sharma S, Gundlach H, Spannagl M (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 41:1144–1151

    Article  Google Scholar 

  • Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, CRY1, CRY2, PHOT1, and PHOT2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci 101:2223–2228

  • Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    Article  CAS  PubMed  Google Scholar 

  • Ozkandagliyan I, Chiou YY, Ye R, Hassan BH, Ozturk N, Sancar A (2013) Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch. J Biol Chem 288:23244–23251

    Article  CAS  Google Scholar 

  • Pedmale U, Huang SS, Zander M, Cole B, Hetzel J, Ljung K, Reis PB, Sridevi P, Nito K, Nery J (2015) Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164:233–245

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrotta G, Yahoubyan G, Nebuloso E, Renzi L, Giuliano G (2001) Tomato and barley contain duplicated copies of cryptochrome 1. Plant Cell Environ 24:991–998

    Article  CAS  Google Scholar 

  • Platten JD, Foo E, Foucher F, Hecht V, Reid JB, Weller JL (2005) The cryptochrome gene family in pea includes two differentially expressed CRY2 genes. Plant Mol Biol 59:683–696

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Li QH, Rubio V, Zhang YC, Mao J, Deng XW, Yang HQ (2005) N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 17:1569–1584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulenberg B, Arnold B, Patton WF (2003) An improved mechanically durable electrophoresis gel matrix that is fully compatible with fluorescence-based protein detection technologies. Proteomics 3:1196–1205

    Article  CAS  PubMed  Google Scholar 

  • Shalitin D, Yu X, Maymon M, Mockler T, Lin C (2003) Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell 15:2421–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Chatterjee M, Burman N, Khurana JP (2014) Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling. Plant Cell Environ 37:961–977

    Article  CAS  PubMed  Google Scholar 

  • Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis Circadian Clock. Science 282:1488–1490

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J (2004) Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteom 3:960–969

    Article  CAS  Google Scholar 

  • Tóth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bognár L (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127:1607–1616

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya Y, Vidaurre D, Toh S, Hanada A, Nambara E, Kamiya Y, Yamaguchi S, Mccourt P (2010) A small-molecule screen identifies new functions for the plant hormone strigolactone. Nat Chem Biol 6:741–749

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Thomashow MF (2004) SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:17306–17311

  • Usami T, Mochizuki N, Kondo M, Nishimura M, Nagatani A (2005) Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant Cell Physiol 45:1798–1808

    Article  Google Scholar 

  • Van Buskirk EK, Decker PV, Chen M (2012) Photobodies in light signaling. Plant Physiol 158:52–60

    Article  PubMed  Google Scholar 

  • Vandenbussche F, Pierik R, Millenaar FF, Voesenek LA, Straeten DVD (2005) Reaching out of the shade. Curr Opin Plant Biol 8:462–468

    Article  CAS  PubMed  Google Scholar 

  • von Arnim AG, Deng XW (1994) Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79:1035–1045

    Article  Google Scholar 

  • Wang H, Ma LG, Li JM, Zhao HY, Deng XW Wang H, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of arabidopsis cryptochromes with COP1 in light control development. Science 294:154–158

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhou L, Yaping FU, Cheung MY, Wong FL, Phang TH, Sun Z, Lam HM (2012) Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress. Plant Cell Environ 35:1932–1947

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zuo Z, Wang X, Gu L, Yoshizumi T, Yang Z, Yang L, Liu Q, Liu W, Han Y (2016) Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science 354

  • Wu G, Spalding EP (2007) Separate functions for nuclear and cytoplasmic cryptochrome 1 during photomorphogenesis of Arabidopsis seedlings. Proc Natl Acad Sci 104:18813–18818

  • Xie XZ, Chen ZP, Wang XJ (2005) Cloning and expression analysis of CRY2 gene in Sorghum bicolor. J Plant Physiol Mol Biol 31:261–268

    CAS  Google Scholar 

  • Xu P, Xiang Y, Zhu H, Xu H, Zhang Z, Zhang C, Zhang L, Ma Z (2009) Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses. Plant Physiol 149:760–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR (2000) The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103:815–827

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Lin R, Sullivan J, Hoecker U, Liu B, Xu L, Deng XW, Wang H (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17:804–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wang X, Deng W, Mo W, Gao J, Liu Q, Zhang C, Wang Q, Lin C, Zuo Z (2016) Using HEK293T expression system to study photoactive plant cryptochromes. Front Plant Sci 7

  • Yu X, Sayegh R, Maymon M, Warpeha K, Klejnot J, Yang H, Huang J, Lee J, Kaufman L, Lin C (2009) Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light-dependent degradation. Plant Cell 21:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Liu H, Klejnot J, Lin C (2010) The cryptochrome blue light receptors. Arabidopsis Book 8:e0135

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Wang Q, Lin J, Deng K, Zhao X, Tang D, Liu X (2010) Arabidopsis cryptochrome-1 restrains lateral roots growth by inhibiting auxin transport. J Plant Physiol 167:670–673

    Article  CAS  PubMed  Google Scholar 

  • Zhang YC, Gong SF, Li QH, Sang Y, Yang HQ (2006) Functional and signaling mechanism analysis of rice CRYPTOCHROME 1. Plant J Cell Mol Biol 46:971–983

    Article  CAS  Google Scholar 

  • Zhang Q, Li H, Li R, Hu R, Fan C, Chen F, Wang Z, Liu X, Fu Y, Lin C (2008) Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA 105:21028–21033

  • Zuo Z, Liu H, Liu B, Liu X, Lin C (2011) Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 21:841–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Bin Liu from Chinese Academy of Agricultural Sciences for kindly providing us with the BiFC plasmids. This research was supported by the program of the National Science Foundation of China (Grant nos. 31572192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingdi Bian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Chun-Hai Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3313 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Meng, L., Ma, Y. et al. Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis. Plant Cell Rep 37, 251–264 (2018). https://doi.org/10.1007/s00299-017-2227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2227-8

Keywords

Navigation