Skip to main content
Log in

Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cryptochromes are blue-light receptors controlling multiple aspects of plant growth and development. They are flavoproteins with significant homology to photolyases, but instead of repairing DNA they function by transducing blue light energy into a signal that can be recognized by the cellular signaling machinery. Here we report the effect of cry1 and cry2 blue light receptors on primary root growth in Arabidopsis thaliana seedlings, through analysis of both cryptochrome-mutant and cryptochrome-overexpressing lines. Cry1 mutant seedlings show reduced root elongation in blue light while overexpressing seedlings show significantly increased elongation as compared to wild type controls. By contrast, the cry2 mutation has the opposite effect on root elongation growth as does cry1, demonstrating that cry1 and cry2 act antagonistically in this response pathway. The site of cryptochrome signal perception is within the shoot, and the inhibitor of auxin transport, 1-N-naphthylphthalamic acid, abolishes the differential effect of cryptochromes on root growth, suggesting the blue-light signal is transmitted from the shoot to the root by a mechanism that involves auxin. Primary root elongation in blue light may thereby involve interaction between cryptochrome and auxin signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NPA:

1-N-naphthylphthalamic acid

References

  • Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Jarillo JA, Cashmore AR (1998) Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10:197–207

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Batschauer A (2005) Plant blue-light receptors. Planta 220:498–502

    Article  PubMed  CAS  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  PubMed  CAS  Google Scholar 

  • Brudler R, Hitomi K, Dauyasu H, Toh H, Kucho KI, Ishiura M, Kanehisa M. Roberts VA, Todo T, Tainer JA, Getzoff E (2003) Identification of a new cryptochrome class: structure, function, and evolution. Mol Cell 11:59–67

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  PubMed  CAS  Google Scholar 

  • Cluis CP, Mouchel CF, Hardtke CS (2004) The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J 38:332–347

    Article  PubMed  CAS  Google Scholar 

  • Corell MJ, Kiss JZ (2005) The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol 46:317–323

    Article  Google Scholar 

  • Falciatore A, Bowler C (2005) The evolution and function of blue and red light photoreceptors. Curr Top Dev Biol 68:317–350

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser C, Staiger D (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216:1–16

    Article  PubMed  CAS  Google Scholar 

  • Friml J (2003) Auxin transport—shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Syono K (1996) Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant Cell Physiol 37:1094–1101

    PubMed  CAS  Google Scholar 

  • Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, Hoefte H (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    Article  PubMed  CAS  Google Scholar 

  • Gyula P, Schafer E, Nagy F (2003) Light perception and signalling in higher plants. Curr Opin Plant Biol 6:446–452

    Article  PubMed  CAS  Google Scholar 

  • Hemm MR, Rider SD, Ogas J, Murry DJ, Chapple C (2004) Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant J 38:765–778

    Article  PubMed  CAS  Google Scholar 

  • Hoecker U (2005) Regulated proteolysis in light signaling. Curr Opin Plant Biol 8:469–476

    Article  PubMed  CAS  Google Scholar 

  • Jensen PJ, Hangarter RP, Estelle M (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116:455–462

    Article  PubMed  CAS  Google Scholar 

  • Kiss JZ, Mullen JL, Correll MJ, Hangarter RP (2003) Phytochromes A and B mediate red-light-induced positive phototropism in roots. Plant Physiol 131:1411–1417

    Article  PubMed  CAS  Google Scholar 

  • Kleine T, Lockhart P, Batschauer A (2003) An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Plant J 35:93–103

    Article  PubMed  CAS  Google Scholar 

  • Kwok SF, Piekos B, Misera S, Deng XW (1996) A complement of ten essential and pleiotropic arabidopsis COP/DET/FUS genes is necessary for repression of photomorphogenesis in darkness. Plant Physiol 110:731–742

    Article  PubMed  CAS  Google Scholar 

  • Leyser O (2005) Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell 121:819–822

    Article  PubMed  CAS  Google Scholar 

  • Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14:207–225

    Google Scholar 

  • Mandoli DF, Ford GA, Waldron LJ, Nemson JA, Briggs WR (1990) Some spectral properties of several soil types: implications for photomorphogenesis. Plant Cell Environ 13:287–294

    Article  Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyls. Genes Dev 11:2983–2995

    Article  PubMed  CAS  Google Scholar 

  • Partch C, Sancar A (2005) Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol 81:1291–1304

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Wada T, Ishiguro S, Okada K (2000) RPT2: a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12:225–236

    Article  PubMed  CAS  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98:6969–6974

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Briggs WR (2002). Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    Article  PubMed  CAS  Google Scholar 

  • Sang Y, Li QH, Rubio V, Zhang YC, Mao J, Deng XW, Yang HQ (2005) N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 17:1569–1584

    Article  PubMed  CAS  Google Scholar 

  • Somers DE, Quail PH (1995) Phytochrome-mediated light regulation of PHYA- and PHYB-GUS transgenes in Arabidopsis thaliana seedlings. Plant Physiol 107:523–534

    PubMed  CAS  Google Scholar 

  • Sullivan JA, Deng XW (2003) From seed to seed: the role of photoreceptors in Arabidopsis development. Dev Biol 260:289–297

    Article  PubMed  CAS  Google Scholar 

  • Takase T, Nakazawa M, Ishikawa A, Kawashima M, Ichikawa T, Takahashi N, Shimada H, Manabe K, Matsui M (2004) Ydk-1D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37:471–483

    Article  PubMed  CAS  Google Scholar 

  • Tanaka SI, Nakamura S, Mochizuki N, Nagatani A (2002) Phytochrome in cotyledons regulates the expression of genes in the hypocotyls through auxin-dependent and-independent pathways. Plant Cell Physiol 43:1171–1181

    Article  PubMed  CAS  Google Scholar 

  • Toth R, Kevei E, Hall A, Millar AJ, Nagy F, Kozma-Bogar L (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127:1607–1616

    Article  PubMed  CAS  Google Scholar 

  • Usami T, Mochizuki N, Kondo M, Nishimura M, Nagatani A. (2004) Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant Cell Physiol 45:1798–1808

    Article  PubMed  CAS  Google Scholar 

  • Wang H (2005) Signaling mechanisms of higher plant photoreceptors: a structure-function perspective. Curr Top Dev Biol 68:227–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Filip Vandenbussche (University of Ghent, Belgium) for helpful comments and critical reading of the manuscript, and to members of the Plant Science Institute at the University of Paris for support and valuable discussion. We acknowledge funding from the CNRS and from the NSF (award #0343737) to M. Ahmad. Roberto Canamero was the recipient of an Erasmus fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canamero, R.C., Bakrim, N., Bouly, JP. et al. Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana . Planta 224, 995–1003 (2006). https://doi.org/10.1007/s00425-006-0280-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0280-6

Keywords

Navigation