Skip to main content
Log in

Investigation of crystal habit of N,N′-dicyclohexylterephthalamide and its influence on the crystallization behavior of isotactic polypropylene

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, the N,N′-dicyclohexylterephthalamide (DCHT) with various morphologies and sizes was prepared by antisolvent precipitation at room temperature, and DCHT single crystals were also grown. Among them, DCHT crystals precipitated from deionized water (H2O), alcohol (C2H5OH) and NN-dimethylformamide (DMF) are particle-like crystallites (DCHT-H2O), cuboid (DCHT-C2H5OH) and large rectangular crystals (DCHT-DMF), respectively. The powder XRD results show that the (002) plane is the dominant growth plane of the DCHT crystals, and the diffraction peak intensity of (100) plane is negatively correlated with the size of the DCHT crystals. The single-crystal XRD results show that the minimum distance between the two nearest DCHT molecules is the hydrogen bond distance (2.21 Å), and the (100) crystal plane is the plane of hydrogen bonding between DCHT molecules. Thus, it is speculated that the hydrogen bonding interaction is the main driving force for the growth of DCHT crystals. Further, the effect of different morphologies and sizes of DCHT on isotactic polypropylene (iPP) crystallization was investigated. Non-isothermal crystallization studies revealed that the DCHT size plays a decisive role in increasing the crystallization temperature of iPP. Through isothermal crystallization, it was found that the upper critical temperature of β-α growth “transition” of iPP could be related to the morphology of DCHT. Finally, the iPP film was attached to the surface of DCHT single crystal, and its crystallization behavior was studied. It is confirmed that the (001) plane is the epitaxial plane of DCHT to the β-iPP molecular chain, while the epitaxial plane of β-iPP is the (110) plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagarajan K, Levon K, Myerson A (2000) Nucleating agents in polypropylene. J Therm Anal Calorim 59:497–508

    Article  CAS  Google Scholar 

  2. Varga J, Schulek-Tóth F (1996) Crystallization, melting and spherulitic structure of β-nucleated random propylene copolymers. J Therm Anal Calorim 47:941–955

    Article  CAS  Google Scholar 

  3. Mao J-J, Jiang Y-Z, Zhou P-Z et al (2020) Nucleus density and crystallization behavior of isotactic polypropylene nucleated with different α/β compound nucleating agents. J Therm Anal Calorim 140:2275–2282

    Article  CAS  Google Scholar 

  4. Wang J, Ren Z, Sun X et al (2015) The βα growth transition of isotactic polypropylene during stepwise crystallization at elevated temperature. Colloid Polym Sci 293:2823–2830

    Article  CAS  Google Scholar 

  5. Looijmans S, Menyhard A, Peters GWM et al (2017) Anomalous temperature dependence of isotactic polypropylene α-on-β cross-nucleation kinetics. Cryst Growth Des 17:4936–4943

    Article  CAS  Google Scholar 

  6. Mohmeyer N, Schmidt H-W, Kristiansen PM et al (2006) Influence of chemical structure and solubility of bisamide additives on the nucleation of isotactic polypropylene and the improvement of its charge storage properties. Macromolecules 39:5760–5767

    Article  CAS  Google Scholar 

  7. Mencik Z (1972) Crystal structure of isotactic polypropylene. J Macromol Sci Part B 6:101–115

    Article  CAS  Google Scholar 

  8. Rybnikář F (1991) Transition of β to α phase in isotactic polypropylene. J Macromol Sci Part B 30:201–223

    Article  Google Scholar 

  9. Shi S, Liu W, Nie M et al (2016) Localized self-assembly and nucleation: a new strategy for preparing highly toughened polymer blends. RSC Adv 6:98104–98108

    Article  CAS  Google Scholar 

  10. Chang B, Schneider K, Vogel R et al (2018) Influence of nucleating agent self-assembly on structural evolution of isotactic polypropylene during uniaxial stretching. Polymer 138:329–342

    Article  CAS  Google Scholar 

  11. Liu L, Zhao Y, Zhang C et al (2021) Morphological characteristics of β-nucleating agents governing the formation of the crystalline structure of isotactic polypropylene. Macromolecules 54:6824–6834

    Article  CAS  Google Scholar 

  12. Yue Y, Yi J, Wang L et al (2020) Toward a more comprehensive understanding on the structure evolution and assembly formation of a bisamide nucleating agent in polypropylene melt. Macromolecules 53:4381–4394

    Article  CAS  Google Scholar 

  13. Hu D, Wang G, Feng J et al (2016) Exploring supramolecular self-assembly of a bisamide nucleating agent in polypropylene melt: the roles of hydrogen bond and molecular conformation. Polymer 93:123–131

    Article  CAS  Google Scholar 

  14. Wittmann JC, Lotz B (1981) Epitaxial crystallization of polyethylene on organic substrates: a reappraisal of the mode of action of selected nucleating agents. J Polym Sci Polym Phys Ed 19:1837–1851

    Article  CAS  Google Scholar 

  15. Lotz B, Miyoshi T, Cheng SZ (2017) 50th anniversary perspective: polymer crystals and crystallization: personal journeys in a challenging research field. Macromolecules 50:5995–6025

    Article  CAS  Google Scholar 

  16. Sun Y, Zhao S, Zhang X et al (2020) Structural relationships between zinc hexahydrophthalate and the β phase of isotactic polypropylene. Ind Eng Chem Res 59:18529–18538

    Article  CAS  Google Scholar 

  17. Stocker W, Schumacher M, Graff S et al (1998) Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly (propylene), β phase. Macromolecules 31:807–814

    Article  CAS  Google Scholar 

  18. Wang Z, Yang W, Liu G et al (2017) Probing into the epitaxial crystallization of β form isotactic polypropylene: from experimental observations to molecular mechanics computation. J Polym Sci Part B Polym Phys 55:418–424

    Article  CAS  Google Scholar 

  19. Zhu P, Song F, Ma P et al (2016) Morphology-controlled self-assembly of a ferrocene–porphyrin based NO2 gas sensor: tuning the semiconducting nature via solvent–solute interaction. J Mater Chem C 4:10471–10478

    Article  CAS  Google Scholar 

  20. Thorat AA, Dalvi SV (2012) Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective. Chem Eng J 181:1–34

    Article  Google Scholar 

  21. D’addio SM, Prud’homme RK (2011) Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev 63:417–426

    Article  CAS  PubMed  Google Scholar 

  22. Algra RE, Graswinckel WS, Van Enckevort WJP et al (2005) Alizarin crystals: an extreme case of solvent induced morphology change. J Cryst Growth 285:168–177

    Article  CAS  Google Scholar 

  23. Millan A (2000) New method for the production of silver halide tabular crystals. J Cryst Growth 208:592–598

    Article  CAS  Google Scholar 

  24. Luo G, Zhang B, Gong P et al (2021) Reexamination of self-assembly of nucleator and its influence on the crystallization of polypropylene. Polymer 231:124139

    Article  CAS  Google Scholar 

  25. Zhang YF, Xin Z (2007) Isothermal crystallization behaviors of isotactic polypropylene nucleated with α/β compounding nucleating agents. J Polym Sci Part B Polym Phys 45:590–596

    Article  CAS  Google Scholar 

  26. Takiyama H, Minamisono T, Osada Y et al (2010) Operation design for controlling polymorphism in the anti-solvent crystallization by using ternary phase diagram. Chem Eng Res Des 88:1242–1247

    Article  CAS  Google Scholar 

  27. Chai S, Li E, Zhang L et al (2022) Crystallization solvent design based on a new quantitative prediction model of crystal morphology. AIChE J 68:e17499

    Article  CAS  Google Scholar 

  28. Lovinger AJ, Chua JO, Gryte CC (1977) Studies on the α and β forms of isotactic polypropylene by crystallization in a temperature gradient. J Polym Sci Polym Phys Ed 15:641–656

    Article  CAS  Google Scholar 

  29. Nakamura K, Shimizu S, Umemoto S et al (2008) Temperature dependence of crystal growth rate for α and β forms of isotactic polypropylene. Polym J 40:915–922

    Article  CAS  Google Scholar 

  30. Iijima M, Strobl G (2000) Isothermal crystallization and melting of isotactic polypropylene analyzed by time- and temperature-dependent small-angle X-ray scattering experiments. Macromolecules 33:5204–5214

    Article  CAS  Google Scholar 

  31. Auriemma F, De Ballesteros OR, De Rosa C et al (2000) Structural disorder in the α form of isotactic polypropylene. Macromolecules 33:8764–8774

    Article  CAS  Google Scholar 

  32. Varga J (1989) β-Modification of polypropylene and its two-component systems. J Therm Anal 35:1891–1912

    Article  CAS  Google Scholar 

  33. Lotz B (1998) α and β phases of isotactic polypropylene: a case of growth kineticsphase reentrency’in polymer crystallization. Polymer 39:4561–4567

    Article  CAS  Google Scholar 

  34. Mathieu C, Thierry A, Wittmann J et al (2000) “Multiple” nucleation of the (010) contact face of isotactic polypropylene, α phase. Polymer 41:7241–7253

    Article  CAS  Google Scholar 

  35. Luo F, Geng C, Wang K et al (2009) New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology. Macromolecules 42:9325–9331

    Article  CAS  Google Scholar 

  36. Hoffman JD, Lauritzen JI Jr (1961) Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Natl Bur Stand Sect A Phys Chem 65:297

    Article  Google Scholar 

  37. Hoffman JD, Davis GT, Lauritzen JI (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay NB (ed) Treatise on solid state chemistry. Springer, Belrin, pp 497–614

    Chapter  Google Scholar 

  38. Cheng SZD, Lotz B (2005) Enthalpic and entropic origins of nucleation barriers during polymer crystallization: the Hoffman–Lauritzen theory and beyond. Polymer 46:8662–8681

    Article  CAS  Google Scholar 

  39. Mcmahon (2006) The crystallographic information file (CIF). Data Sci J 5:174–177

    Article  Google Scholar 

  40. Mathieu C, Thierry A, Wittmann JC et al (2002) Specificity and versatility of nucleating agents toward isotactic polypropylene crystal phases. J Polym Sci Part B Polym Phys 40:2504–2515

    Article  CAS  Google Scholar 

  41. Wittmann JC, Lotz B (1990) Epitaxial crystallization of polymers on organic and polymeric substrates. Prog Polym Sci 15:909–948

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y. H. Niu thanks financial supports from the National Science Foundation of China with grant number 52073184, 51873125. G. X. Li thanks financial support from the National Science Foundation of China with grant number 51721091 and Program of Introducing Talents of Discipline to Universities with grant number B13040.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhua Niu or Guangxian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1769 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Luo, G., Niu, Y. et al. Investigation of crystal habit of N,N′-dicyclohexylterephthalamide and its influence on the crystallization behavior of isotactic polypropylene. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05254-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05254-5

Keywords

Navigation