Skip to main content
Log in

Enhanced luminescence stability and oxidation–reduction potential of polyfluorene for organic electronics: a review

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In pursuing sustainable technologies, organic electronic-based materials have witnessed remarkable progress, with polyfluorene (PF) among the blue light-emitting polymers garnering significant attention. PF, renowned for its remarkable light absorption and exceptional optoelectronic properties, exhibits great potential for various applications including display technologies, solar cells, lasers and transistors. Nonetheless, the diverse phases in PF significantly affect the performance of optoelectronic devices, predominantly due to the coexistence of different conformations in thin films, while promising, PF confronts hurdles related to stability and degradation during operation, leading to spectral changes and colour purity issue. Since the early 1990s, various studies have been devoted by researchers to determine the chemical changes in the PF chain and its functional groups after being subjected to different types of degradation with the aim of controlling and retarding the decomposition process. Another alternative strategy is to promote the formation of β-phase in PF, which is characterised by well-ordered conformation. This review aims to provide a comprehensive overview of PF degradation behaviour, modes and mechanisms. Various approaches to delay and suppress PF degradation are discussed. Meanwhile, the role of the β-phase in suppressing PF degradation and enhancing optoelectronic applications has also been highlighted. Thus, scientists are diligently attempting to enhance the formation and stability of the β-phase to improve the performance of optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim M et al (2020) Donor–acceptor-conjugated polymer for high-performance organic field-effect transistors: a progress report. Adv Funct Mater 30(20):1–25

    Google Scholar 

  2. Gu X, Shaw L, Gu K, Toney MF, Bao Z (2018) The meniscus-guided deposition of semiconducting polymers. Nat Commun 9(1)

  3. Yang HS, Choi HN, Lee IH (2023) Recent progress on end-group chemistry of conjugated polymers based on Suzuki-Miyaura catalyst-transfer polymerization. Giant 14:100152

    CAS  Google Scholar 

  4. Yang Z et al (2010) High-Tg carbazole derivatives as a new class of aggregation-induced emission enhancement materials. J Mater Chem 20(35):7352–7359

    CAS  Google Scholar 

  5. Jiang Z et al (2011) Star-shaped oligotriarylamines with planarized triphenylamine core: Solution-processable, high-Tg hole-injecting and hole-transporting materials for organic light-emitting devices. Chem Mater 23(3):771–777

    CAS  Google Scholar 

  6. Guo F et al (2022) Efficient polyfluorene derivatives for blue light-emitting diodes enabled by tuning conjugation length of bulky chromophores. Dye Pigment 199(December 2021):110059

    CAS  Google Scholar 

  7. Perevedentsev A et al (2015) Dip-pen patterning of poly(9,9-dioctylfluorene) chain-conformation-based nano-photonic elements. Nat Commun 6

  8. Mishra AV, Chandorkar KB, Patil VR (2018) Microwave assisted novel synthetic route for polyfluorenes containing triphenylamine and solubilizing alkyl moiety for blue emitting diodes. Polym Int 67(4):405–413

    CAS  Google Scholar 

  9. Han Y, Bai L, Lin J, Ding X, Xie L, Huang W (2021) Diarylfluorene-based organic semiconductor materials toward optoelectronic applications. Adv Funct Mater 31(47):1–28

    Google Scholar 

  10. Zhao Y et al (2016) Supramolecular chirality in achiral polyfluorene: chiral gelation, memory of chirality, and chiral sensing property. Macromolecules 49(9):3214–3221

    CAS  Google Scholar 

  11. Abdul Rahim NA, Fujiki M (2016) Aggregation-induced scaffolding: Photoscissable helical polysilane generates circularly polarized luminescent polyfluorene. Polym Chem 7(28):4618–4629

    CAS  Google Scholar 

  12. Tseng TW, Yan H, Nakamura T, Omagari S, Kim JS, Vacha M (2020) Real-time monitoring of formation and dynamics of intra- And interchain phases in single molecules of polyfluorene. ACS Nano 14(11):16096–16104

    CAS  PubMed  Google Scholar 

  13. Li T et al (2022) Influence of molecular weight and the change of solvent solubility on β conformation and chains condensed state structure for poly (9,9-dioctylfluorene) (PFO) in solution. Polymer (Guildf) 240(November 2021):124471

    CAS  Google Scholar 

  14. Meng B, Liu J, Wang L (2020) Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polym Chem 11(7):1261–1270

    CAS  Google Scholar 

  15. Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H (2020) Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat Mater 19(5):491–502

    CAS  PubMed  Google Scholar 

  16. Azadinia M, Fathollahi M, Barghi T, Zare Zardareh S, Akbari Boroumand F, Mohajerani E (2020) Electrical and environmental degradation causes and effects in polyfluorene-based polymer light-emitting diodes. J Electron Mater 49(6):3645–3651

    CAS  Google Scholar 

  17. Sickinger A, Mecking S (2021) Origin of the anisotropy and structure of ellipsoidal poly(fluorene) nanoparticles. Macromolecules 54(11):5267–5277

    CAS  Google Scholar 

  18. Xie LH, Yin CR, Lai WY, Fan QL, Huang W (2012) Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog Polym Sci 37(9):1192–1264

    CAS  Google Scholar 

  19. Wang L et al (2014) Limonene induced chiroptical generation and inversion during aggregation of achiral polyfluorene analogs: Structure-dependence and mechanism. Polym Chem 5(20):5920–5927

    CAS  Google Scholar 

  20. Kobin B, Behren S, Braun-Cula B, Hecht S (2016) Photochemical degradation of various bridge-substituted fluorene-based materials. J Phys Chem A 120(28):5474–5480

    CAS  PubMed  Google Scholar 

  21. Scherf U, List EJW (2002) Semiconducting polyfluorenes—towards reliable structure-property relationships. Adv Mater 14(7):477

    CAS  Google Scholar 

  22. List EJW, Guentner R, De Freitas PS, Scherf U (2002) The effect of keto defect sites on the emission properties of polyfluorene-type materials. Adv Mater 14(5):374–378

    CAS  Google Scholar 

  23. Gamerith S, Gadermaier C, Scherf U, List EJW (2004) Emission properties of pristine and oxidatively degraded polyfluorene type polymers. Phys Status Solidi Appl Res 201(6):1132–1151

    CAS  Google Scholar 

  24. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109(3):897–1091

    CAS  PubMed  Google Scholar 

  25. Bliznyuk VN, Carter SA, Scott JC, Klärner G, Miller RD, Miller DC (1999) Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices. Macromolecules 32(2):361–369

    CAS  Google Scholar 

  26. Grisorio R, Allegretta G, Mastrorilli P, Suranna GP (2011) On the degradation process involving polyfluorenes and the factors governing their spectral stability. Macromolecules 44(20):7977–7986

    CAS  Google Scholar 

  27. Grisorio R, Suranna GP, Mastrorilli P, Nobile CF (2007) Insight into the role of oxidation in the thermally induced green band in fluorene-based systems. Adv Funct Mater 17(4):538–548

    CAS  Google Scholar 

  28. Xia C, Advincula RC (2001) Decreased aggregation phenomena in polyfluorenes by introducing carbazole copolymer units. Macromolecules 34(17):5854–5859

    CAS  Google Scholar 

  29. Fujiki M, Okazaki S, Rahim NAA, Yamada T, Nomura K (2021) Synchronization in non-mirror-symmetrical chirogenesis: Non-helical π–conjugated polymers with helical polysilane copolymers in co-colloids. Symmetry (Basel) 13(4):594

    CAS  Google Scholar 

  30. Nakamura T, Sharma DK, Hirata S, Vacha M (2018) Intrachain aggregates as the origin of green emission in polyfluorene studied on ensemble and single-chain level. J Phys Chem C 122(15):8137–8146

    CAS  Google Scholar 

  31. Shu CF, Dodda R, Wu FI, Liu MS, Jen AKY (2003) Highly efficient blue-light-emitting diodes from polyfluorene containing bipolar pendant groups. Macromolecules 36(18):6698–6703

    CAS  Google Scholar 

  32. Brenner P, Fleig LM, Liu X, Welle A, Bräse S, Lemmer U (2015) Degradation mechanisms of polyfluorene-based organic semiconductor lasers under ambient and oxygen-free conditions. J Polym Sci Part B Polym Phys 53(15):1029–1034

    CAS  Google Scholar 

  33. Sun W, Zhou N, Xiao Y, Wang S, Li X (2018) Novel carbazolyl-substituted spiro[acridine-9,9′-fluorene] derivatives as deep-blue emitting materials for OLED applications. Dye Pigment 154(February):30–37

    CAS  Google Scholar 

  34. Feng Q et al (2019) Conjugated nanopolymer based on a nanogrid: approach toward stable polyfluorene-type fluorescent emitter for blue polymer light-emitting diodes. ACS Appl Polym Mater 1(9):2441–2449

    CAS  Google Scholar 

  35. Luck KA, Arnold HN, Shastry TA, Marks TJ, Hersam MC (2016) Suppression of polyfluorene photo-oxidative degradation via encapsulation of single-walled carbon nanotubes. J Phys Chem Lett 7(20):4223–4229

    CAS  PubMed  Google Scholar 

  36. Lin J et al (2019) Ultrastable supramolecular self-encapsulated wide-bandgap conjugated polymers for large-area and flexible electroluminescent devices. Adv Mater 31(1):1–9

    CAS  Google Scholar 

  37. Lim WF, Quah HJ, Hassan Z (2016) Effects of annealing temperature on optical, morphological, and electrical characteristics of polyfluorene-derivative thin films on ITO glass substrate. Appl Opt 55(6):1198

    CAS  PubMed  Google Scholar 

  38. Shi WX, Liu N, Zhou YM, Cao XA (2019) Effects of postannealing on the characteristics and reliability of polyfluorene organic light-emitting diodes. IEEE Trans Electron Devices 66(2):1057–1062

    CAS  Google Scholar 

  39. Kang Wei C, Abdul Rahim NA, Pei Leng T, Abdul Hisam NS, Alias SS (2022) Thermal degradation of photoluminescence Poly(9,9-dioctylfluorene) solvent-tuned aggregate films. Polymers (Basel) 14(8):1615

    Google Scholar 

  40. Sabah FA, Razak IA, Kabaa EA, Rahim NAA,Chavan GT, Jeon CW (2023) Influence of blending and conductive layer on the photoluminescence intensity of PFO thin films implemented for polymer light-emitting applications. Polym. Bull., no. 0123456789

  41. Ueda K, Tanaka K, Chujo Y (2018) Optical, electrical and thermal properties of organic-inorganic hybrids with conjugated polymers based on POSS having heterogeneous substituents. Polymers (Basel) 11(1):44

    PubMed  Google Scholar 

  42. Parolin GA, Menandro AS, Barbosa CG, Péres LO (2019) The effect of UV light on luminescent blends. Synth Met 253(January):94–99

    CAS  Google Scholar 

  43. Santos TCF et al (2019) UV-converting blueemitting polyfluorene-based organic-inorganic hybrids for solid state lighting. Polymer (Guildf) 174(April):109–113

    CAS  Google Scholar 

  44. Gon M, Kato K, Tanaka K, Chujo Y (2019) Elastic and mechanofluorochromic hybrid films with POSS-capped polyurethane and polyfluorene. Mater Chem Front 3(6):1174–1180

    CAS  Google Scholar 

  45. R. da R. Rodrigues, D. S. Pellosi, G. Louarn, and L. O. Péres, (2023) Nanocomposite films of silver nanoparticles and conjugated copolymer in natural and nano-form: structural and morphological studies. Materials (Basel) 16(10):3663

    Google Scholar 

  46. Santos PL, Cury LA, Dias FB, Monkman AP (2016) Spectroscopic studies of different poly3hexylthiophene chain environments in a polyfluorene matrix. J Lumin 172:118–123

    CAS  Google Scholar 

  47. Grell M, Bradley DDC, Inbasekaran M, Woo EP (1997) A glass-Forming conjugated main-chain liquid crystal polymer for polarized electroluminescence applications. Adv Mater 9(10):798–802

    CAS  Google Scholar 

  48. Chen SH, Chou HL, Su AC, Chen SA (2004) Molecular packing in crystalline poly(9,9-di-n-octyl-2,7-fluorene). Macromolecules 37(18):6833–6838

    CAS  Google Scholar 

  49. Chunwaschirasiri W, Tanto B, Huber DL, Winokur MJ (2005) Chain conformations and photoluminescence of poly(di-n-octylfluorene). Phys Rev Lett 94(10):3–6

    Google Scholar 

  50. Chang M, Lim GT, Park B, Reichmanis E (2017) Control of molecular ordering, alignment, and charge transport in solution-processed conjugated polymer thin films. Polymers (Basel) 9(6):23–31

    Google Scholar 

  51. Zhang L, Zhao K, Li H, Zhang T, Liu D, Han Y (2019) Liquid crystal ordering on conjugated polymers film morphology for high performance. J Polym Sci Part B Polym Phys 57(23):1572–1591

    CAS  Google Scholar 

  52. Zhang Q et al (2017) An easy approach to control β-phase formation in PFO films for optimized emission properties. Molecules 22(2):1–8

    CAS  Google Scholar 

  53. Arif M, Volz C, Guha S (2006) Chain morphologies in semicrystalline polyfluorene: evidence from Raman scattering. Phys Rev Lett 96(2):1–4

    Google Scholar 

  54. Tsoi WC et al (2008) Observation of the β-phase in two short-chain oligofluorenes. Adv Funct Mater 18(4):600–606

    CAS  Google Scholar 

  55. Yu MN et al (2018) Photophysical and fluorescence anisotropic behavior of polyfluorene β-conformation films. J Phys Chem Lett 9(2):364–372

    PubMed  Google Scholar 

  56. Surin M et al (2004) Correlation between the microscopic morphology and the solid-state photoluminescence properties in fluorene-based polymers and copolymers. Chem Mater 16(6):994–1001

    CAS  Google Scholar 

  57. Becker K, Lupton JM (2005) Dual species emission from single polyfluorene molecules: signatures of stress-induced planarization of single polymer chains. J Am Chem Soc 127(20):7306–7307

    CAS  PubMed  Google Scholar 

  58. Perevedentsev A, Chander N, Kim JS, Bradley DDC (2016) Spectroscopic properties of poly(9,9-dioctylfluorene) thin films possessing varied fractions of β-phase chain segments: enhanced photoluminescence efficiency via conformation structuring. J Polym Sci Part B Polym Phys 54(19):1995–2006

    CAS  Google Scholar 

  59. Bradley DDC et al (1997) Influence of aggregation on the optical properties of a polyfluorene. Opt Probes Conjug Polym 3145:254–259

    CAS  Google Scholar 

  60. Liang J et al (2016) Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene. Nanotechnology 27(28):1–8

    Google Scholar 

  61. Bai Z et al (2016) Quantitative study on β-phase heredity based on poly(9, 9-dioctylfluorene) from solutions to films and the effect on hole mobility. J Phys Chem C 120(49):27820–27828

    CAS  Google Scholar 

  62. Lin JY et al (2014) A rational molecular design of β-phase polydiarylfluorenes: synthesis, morphology, and organic lasers. Macromolecules 47(3):1001–1007

    CAS  Google Scholar 

  63. Knaapila M, Monkman AP (2013) Methods for controlling structure and photophysical properties in polyfluorene solutions and gels. Adv Mater 25:1090–1108

    CAS  PubMed  Google Scholar 

  64. Schulz GL, Ludwigs S (2017) Controlled crystallization of conjugated polymer films from solution and solvent vapor for polymer electronics. Adv Funct Mater 27(1):1603083

    Google Scholar 

  65. Zhao X, Li R, Jia Y (2022) Tuning the formation of β-phase poly(9,9-di-n-octylfluorenyl-2,7-diyl) via nano-confinement and polystyrene blending for improved photocatalysis. ChemPhysMater 1(3):219–226

    Google Scholar 

  66. Li T et al (2016) Effect of conjugated polymer poly (9,9-dioctylfluorene) (PFO) molecular weight change on the single chains, aggregation and β phase. Polymer (Guildf) 103:299–306

    CAS  Google Scholar 

  67. Zhu W et al (2019) Polydiarylfluorene molecular weight effects on β-conformation formation for amplified spontaneous emission for optoelectronic applications. ACS Appl Polym Mater 1(9):2352–2359

    CAS  Google Scholar 

  68. Panzer F, Bässler H, Köhler A (2017) Temperature induced order-disorder transition in solutions of conjugated polymers probed by optical spectroscopy. J Phys Chem Lett 8(1):114–125

    CAS  PubMed  Google Scholar 

  69. Ahmad FH, Hassan Z, Lim WF (2021) “Investigation on structural, morphological, optical, and current-voltage characteristics of polyfluorene with dissimilar composition spin coated on ITO. Optik (Stuttg) 242(April):167034

    CAS  Google Scholar 

  70. Grell M, Bradley DDC, Ungar G, Hill J, Whitehead KS (1999) Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 32(18):5810–5817

    CAS  Google Scholar 

  71. Nahid MM, Welford A, Gann E, Thomsen L, Sharma KP, McNeill CR (2018) Nature and extent of solution aggregation determines the performance of P(NDI2OD-T2) thin-film transistors. Adv Electron Mater 4(4):1–12

    Google Scholar 

  72. Jadoun S, Rathore DS, Riaz U, Chauhan NPS (2021) Tailoring of conducting polymers via copolymerization – a review. Eur Polym J 155(June):110561

    CAS  Google Scholar 

  73. Eggimann HJ, Le Roux F, Herz LM (2019) How β-phase content moderates chain conjugation and energy transfer in polyfluorene films. J Phys Chem Lett 10(8):1729–1736

    CAS  PubMed  Google Scholar 

  74. Nakamura T, Vacha M (2020) Mechanically induced conformation change, fluorescence modulation, and mechanically assisted photodegradation in single nanoparticles of the conjugated polymer poly(9,9-dioctylfluorene). J Phys Chem Lett 11(8):3103–3110

    CAS  PubMed  Google Scholar 

  75. Anni M (2019) Dual band amplified spontaneous emission in the blue in Poly(9,9-dioctylfluorene) thin films with phase separated glassy and β-phases. Opt Mater (Amst).96, no. August

  76. Lee Y, Kim SY, Kim DY, Lee S (2020) Highly sensitive UV photodiode composed of β-polyfluorene/yzno nanorod organic-inorganic hybrid heterostructure. Nanomaterials 10(8):1–13

    Google Scholar 

  77. Rajamanickam S, Mohammad SM, Hassan Z, Omar AF, Muhammad A (2022) Investigations into Ag nanoparticles–carbon–poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) composite: morphological, structural, optical, and electrical characterization. Polym Bull 79(10):9111–9130

    CAS  Google Scholar 

  78. Cheetham NJ et al (2019) The importance of microstructure in determining polaron generation yield in poly(9,9-dioctylfluorene). Chem Mater 31(17):6787–6797

    CAS  Google Scholar 

  79. Wang B, Ye H, Riede M, Bradley DDC (2021) Chain conformation control of fluorene-benzothiadiazole copolymer light-emitting diode efficiency and lifetime. ACS Appl Mater Interfaces 13(2):2919–2931

    CAS  PubMed  Google Scholar 

  80. Liu B et al (2019) Discovery and structure characteristics of the intermediate-state conformation of poly(9,9-dioctylfluorene) (PFO) in the dynamic process of conformation transformation and its effects on carrier mobility. RSC Adv 10(1):492–500

    PubMed  Google Scholar 

Download references

Funding

Ministry of Higher Education, Malaysia, FRGS/1/2019/TK05/UNIMAP/02/17, Nor Azura Abdul Rahim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nor Azura Abdul Rahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chew, K.W., Abdul Rahim, N.A., Teh, P.L. et al. Enhanced luminescence stability and oxidation–reduction potential of polyfluorene for organic electronics: a review. Polym. Bull. 81, 7659–7685 (2024). https://doi.org/10.1007/s00289-023-05096-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05096-7

Keywords

Navigation