Skip to main content
Log in

Review of the sources, synthesis, and applications of nanocellulose materials

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nowadays, the interest of the world toward nanocellulose materials has been incredibly increased for the development of high value products owing to the unique and potentially convenient structures of nanocellulose. There is advanced enhancement of the nanocellulose application with strongly increasing interest for the high demand of sustainability requirements in the global market. Nanocellulose materials are sourced from different plant fibers, algae, tunicate and bacteria. They have been synthesized through different extraction techniques like acid hydrolysis, and mechanical refining methods with increasing advancements. Nanocellulose products have potential application areas of reinforcements in nanocomposites, paper and packaging industries, biodegradable films, barriers in packaging and membrane industries, additives in food and medical applications, and medical devices, wound healing, bioactive implants and self-healing applications. This review realizes the current understandings of nanocellulose materials with source materials, isolation techniques from their sources, extraction methods and end use applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stevens CV (2010) Industrial applications of natural fibres: structure, properties and technical applications. Wiley, Hoboken

    Google Scholar 

  2. Zhang Z et al (2020) High performances of plant fiber reinforced composites—A new insight from hierarchical microstructures. Compos Sci Technol 194:108151

    Article  CAS  Google Scholar 

  3. Faruk O, Bledzki AK, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299(1):9–26

    Article  CAS  Google Scholar 

  4. Ilyas R, Sapuan S, Ishak M, Zainudin E (2018) Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohyd Polym 202:186–202

    Article  CAS  Google Scholar 

  5. Gupta V, Carrott P, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Biores Technol 216:1066–1076

    Article  Google Scholar 

  6. van den Bergh J, Babich IV, O’Connor P, Moulijn JA (2017) Production of monosugars from lignocellulosic biomass in molten salt hydrates: process design and techno-economic analysis. Ind Eng Chem Res 56(45):13423–13433

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ilyas R et al (2021) Macro to nanoscale natural fiber composites for automotive components: Research, development, and application. Biocompos Synthetic Compos Autom Appl. https://doi.org/10.1016/B978-0-12-820559-4.00003-1

    Article  Google Scholar 

  8. Chirayil CJ, Mathew L, Thomas S (2014) Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci 37:20–28

    CAS  Google Scholar 

  9. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    Article  CAS  Google Scholar 

  10. Saxena N (2023) Bio-nanotechnology in waste to energy conversion in a circular economy approach for better sustainability. In: Bionanotechnology towards green energy. CRC Press, pp 253–274

  11. Mishra R, Militky J, Arumugam V (2018) Characterization of nanomaterials in textiles. In: Nanotechnology in textiles: theory and application, vol 219

  12. Sá NM, Mattos AL, Silva LM, Brito ES, Rosa MF, Azeredo HM (2020) From cashew byproducts to biodegradable active materials: bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films. Int J Biol Macromol 161:1337–1345

    Article  PubMed  Google Scholar 

  13. Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H (2021) Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater 33(28):2000619

    Article  CAS  Google Scholar 

  14. Abdul Khalil H et al (2020) A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers 12(8):1759

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kargarzadeh H et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393

    Article  CAS  Google Scholar 

  16. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohyd Polym 86(3):1291–1299

    Article  CAS  Google Scholar 

  17. Guan Q-F et al (2020) "Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Sci Adv 6(18):eaaz1114

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xu X, Liu F, Jiang L, Zhu J, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5(8):2999–3009

    Article  CAS  PubMed  Google Scholar 

  19. Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S (2019) Commercial application of cellulose nano-composites–A review. Biotechnol Rep 21:e00316

    Article  Google Scholar 

  20. Omer AM (2008) Energy, environment and sustainable development. Renew Sustain Energy Rev 12(9):2265–2300

    Article  CAS  Google Scholar 

  21. Greyson J (2007) An economic instrument for zero waste, economic growth and sustainability. J Clean Prod 15(13–14):1382–1390

    Article  Google Scholar 

  22. Yu S, Sun J, Shi Y, Wang Q, Wu J, Liu J (2021) Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. Environ Sci Ecotechnol 5:100077

    Article  CAS  PubMed  Google Scholar 

  23. Bharimalla AK, Deshmukh SP, Patil PG, Vigneshwaran N (2015) Energy efficient manufacturing of nanocellulose by chemo-and bio-mechanical processes: a review. World J Nano Sci Eng 5(04):204

    Article  Google Scholar 

  24. Ilyas R et al (2020) Nanocellulose/starch biopolymer nanocomposites: Processing, manufacturing, and applications. Advanced processing, properties, and applications of starch and other bio-based polymers. Elsevier, Hoboken, pp 65–88

    Chapter  Google Scholar 

  25. Reshmy R et al (2020) Nanocellulose-based products for sustainable applications-recent trends and possibilities. Rev Environ Sci Bio/Technol 19:779–806

    Article  CAS  Google Scholar 

  26. Khalil HA et al (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sustain Energy Rev 64:823–836

    Article  Google Scholar 

  27. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  PubMed  Google Scholar 

  28. Ng H-M et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200

    Article  CAS  Google Scholar 

  29. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Article  CAS  PubMed  Google Scholar 

  30. Azizi Samir MAS, Alloin F, Dufresne AJB (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  PubMed  Google Scholar 

  31. Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystals. BioResources 5(2):727–740

    Article  CAS  Google Scholar 

  32. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  33. Alila S, Besbes I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259

    Article  CAS  Google Scholar 

  34. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39

    Article  CAS  Google Scholar 

  35. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  CAS  Google Scholar 

  36. Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—An overview. Prog Polym Sci 34(9):982–1021

    Article  CAS  Google Scholar 

  37. Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on L-polylactide and jute fibres. Compos Sci Technol 63(9):1287–1296

    Article  CAS  Google Scholar 

  38. Chen H (2014) “Biotechnology of lignocellulose,” theory and practice. Chemical Industry Press and Springer, China

    Book  Google Scholar 

  39. Isaac A, de Paula J, Viana CM, Henriques AB, Malachias A, Montoro LA (2018) From nano-to micrometer scale: the role of microwave-assisted acid and alkali pretreatments in the sugarcane biomass structure. Biotechnol Biofuels 11(1):1–11

    Article  Google Scholar 

  40. Asim M et al (2020) Thermal stability of natural fibers and their polymer composites. Iran Polym J 29:625–648

    Article  CAS  Google Scholar 

  41. Chung T-J et al (2018) The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Appl Sci 8(3):376

    Article  Google Scholar 

  42. Houtman CJ, Atalla RH (1995) Cellulose-lignin interactions (a computational study). Plant Physiol 107(3):977–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu H et al (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374

    Article  CAS  PubMed  Google Scholar 

  44. Ramesh A, Srinivasulu N, Rani MI, and Rao DN (2017) Extraction of cellulose nano fibers and development of nano cellulose fiber composites-a review. In: Proceedings of the 1st international and 18th ISME conference

  45. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47(3):291–294

    Article  CAS  Google Scholar 

  46. Choong FX et al (2016) Nondestructive, real-time determination and visualization of cellulose, hemicellulose and lignin by luminescent oligothiophenes. Sci Rep 6(1):35578

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG

  48. Hu H (2020) Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system. Compos B Eng 195:108094

    Article  CAS  Google Scholar 

  49. Sadasivuni KK, Saha P, Adhikari J, Deshmukh K, Ahamed MB, Cabibihan JJ (2020) Recent advances in mechanical properties of biopolymer composites: a review. Polym Compos 41(1):32–59

    Article  CAS  Google Scholar 

  50. Ansell MP, Mwaikambo LY (2009) The structure of cotton and other plant fibres. Handbook of textile fibre structure. Elsevier, Hoboken, pp 62–94

    Chapter  Google Scholar 

  51. Martínez-Sanz M et al (2017) Structure of cellulose microfibrils in mature cotton fibres. Carbohydr Poly 175:450–463

    Article  PubMed  Google Scholar 

  52. Muhd Julkapli N, Bagheri S (2017) Nanocellulose as a green and sustainable emerging material in energy applications: a review. Polym Adv Technol 28(12):1583–1594

    Article  CAS  Google Scholar 

  53. Kovalenko VI (2010) Crystalline cellulose: structure and hydrogen bonds. Russ Chem Rev 79(3):231

    Article  CAS  Google Scholar 

  54. Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci, Part B: Polym Phys 40(11):1095–1102

    Article  CAS  Google Scholar 

  55. Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromol 5(4):1385–1391

    Article  CAS  Google Scholar 

  56. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  PubMed  Google Scholar 

  57. Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5:76–89

    Article  Google Scholar 

  58. Kumar R, Kumari S, Rai B, Kumar R, Sirohi S, Kumar G (2020) A facile chemical approach to isolate cellulose nanofibers from jute fibers. J Polym Environ 28:2761–2770

    Article  CAS  Google Scholar 

  59. Kumar R, Rai B, Kumar G (2019) A simple approach for the synthesis of cellulose nanofiber reinforced chitosan/PVP bio nanocomposite film for packaging. J Polym Environ 27:2963–2973

    Article  CAS  Google Scholar 

  60. Syazwani NS, Efzan ME, Kok C, Nurhidayatullaili M (2022) Analysis on extracted jute cellulose nanofibers by Fourier transform infrared and X-Ray diffraction. J Build Eng 48:103744

    Article  Google Scholar 

  61. Kumar R et al (2019) A simple approach for the isolation of cellulose nanofibers from banana fibers. Mater Res Express 6(10):105601

    Article  CAS  Google Scholar 

  62. Deepa B et al (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Biores Technol 102(2):1988–1997

    Article  CAS  Google Scholar 

  63. Tibolla H, Pelissari FM, Martins JT, Vicente A, Menegalli FC (2018) Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: characterization and cytotoxicity assessment. Food Hydrocoll 75:192–201

    Article  CAS  Google Scholar 

  64. Orasugh JT et al (2018) A facile comparative approach towards utilization of waste cotton lint for the synthesis of nano-crystalline cellulose crystals along with acid recovery. Int J Biol Macromol 109:1246–1252

    Article  CAS  PubMed  Google Scholar 

  65. Wang Y, Wei X, Li J, Wang Q, Wang F, Kong L (2013) Homogeneous isolation of nanocellulose from cotton cellulose by high pressure homogenization. J Mater Sci Chem Eng 1(05):49–52

    CAS  Google Scholar 

  66. Theivasanthi T, Christma FA, Toyin AJ, Gopinath SC, Ravichandran R (2018) Synthesis and characterization of cotton fiber-based nanocellulose. Int J Biol Macromol 109:832–836

    Article  CAS  PubMed  Google Scholar 

  67. Fujii T, Okubo K, Yamashita N (2004) Development of high performance bamboo composite using micro fibrillated cellulose. WIT Trans Built Environ 76:11

    Google Scholar 

  68. Rajan KP, Veena N, Maria HJ, Rajan R, Skrifvars M, Joseph K (2011) Extraction of bamboo microfibrils and development of biocomposites based on polyhydroxybutyrate and bamboo microfibrils. J Compos Mater 45(12):1325–1329

    Article  CAS  Google Scholar 

  69. Puspita D, Musyarofah L, and Hidayah E (2019) Fabrication and tensile properties of bamboo micro-fibrils (BMF)/poly-lactic acid (PLA) green composite. In: Journal of physics: conference series, vol 1217, no. 1: IOP Publishing, p 012005

  70. Okubo K, Fujii T, Yamashita N (2005) Improvement of interfacial adhesion in bamboo polymer composite enhanced with micro-fibrillated cellulose. JSME Int J Series A Solid Mech Mater Eng 48(4):199–204

    Article  Google Scholar 

  71. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Article  Google Scholar 

  72. Trifol J, Sillard C, Plackett D, Szabo P, Bras J, Daugaard A (2017) Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process. Cellulose 24:107–118

    Article  CAS  Google Scholar 

  73. Mao H, Gong Y, Liu Y, Wang S, Du L, Wei C (2017) Progress in nanocellulose preparation and application. Paper Biomater 2(4):65–76

    Article  Google Scholar 

  74. L. N. Ludueña, D. P. Fasce, V. A. Alvarez, and P. M. Stefani, "Nanocellulose from rice husk following alkaline treatment to remove silica," 2011.

  75. Rashid S, Dutta H (2020) Characterization of nanocellulose extracted from short, medium and long grain rice husks. Ind Crops Prod 154:112627

    Article  CAS  Google Scholar 

  76. Ilyas R, Sapuan S, Ishak M, Zainudin E, Atikah M (2018) "Characterization of sugar palm nanocellulose and its potential for reinforcement with a starch-based composite. Sugar palm biofibers, biopolymers, and biocomposites. CRC Press, Baco Raton, pp 189–220

    Chapter  Google Scholar 

  77. Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G (2018) Nanocellulose: extraction and application. Carbon Resour Conver 1(1):32–43

    Article  Google Scholar 

  78. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37(9):815–827

    CAS  Google Scholar 

  79. Einchhorn S et al (2010) Review: current international research into cellulose nanofibres and composites. J Mater Sci 45:1–33

    Article  Google Scholar 

  80. Panthapulakkal S, Sain M (2012) Preparation and characterization of cellulose nanofibril films from wood fibre and their thermoplastic polycarbonate composites. Int J Polym Sci. https://doi.org/10.1155/2012/381342

    Article  Google Scholar 

  81. Liu D, Yuan X, Bhattacharyya D, Easteal A (2010) Characterisation of solution cast cellulose nanofibre–reinforced poly (lactic acid). Express Polym Lett 4(1):26–31

    Article  Google Scholar 

  82. Giri J, Adhikari R (2013) A brief review on extraction of nanocellulose and its application. Bibechana 9:81–87

    Article  Google Scholar 

  83. Cherian BM et al (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohyd Polym 86(4):1790–1798

    Article  CAS  Google Scholar 

  84. Šutka A, Kukle S, Gravitis J, and Grave L (2013) Characterization of cellulose microfibrils obtained from hemp. In: Conference Papers in Science, vol. 2013: Hindawi

  85. Kukle S, Gravitis J, Putnina A (2012) Processing parameters influence on disintegration intensity of technical hemp fibres. J Biobased Mater Bioenergy 6(4):440–448

    Article  CAS  Google Scholar 

  86. Brant AJC, Naime N, Lugão AB, Ponce P (2019) Cellulose nanoparticles extracted from sugarcane bagasse and their use in biodegradable recipients for improving physical properties and water barrier of the latter. Mater Sci Appl 11(1):81–133

    Google Scholar 

  87. Sofla MRK, Brown R, Tsuzuki T, Rainey T (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotechnol 7(3):035004

    Article  Google Scholar 

  88. Plermjai K, Boonyarattanakalin K, Mekprasart W, Pavasupree S, Phoohinkong W, and Pecharapa W (2018) Extraction and characterization of nanocellulose from sugarcane bagasse by ball-milling-assisted acid hydrolysis. In: AIP conference proceedings, 2018, vol. 2010, no. 1: AIP Publishing

  89. Maiti S et al (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohyd Polym 98(1):562–567

    Article  CAS  Google Scholar 

  90. Jiang F, Hsieh Y-L (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohyd Polym 95(1):32–40

    Article  CAS  Google Scholar 

  91. Yongvanich N (2015) Isolation of nanocellulose from pomelo fruit fibers by chemical treatments. J Nat Fibers 12(4):323–331

    Article  CAS  Google Scholar 

  92. Mehanny S et al (2021) Extraction and characterization of nanocellulose from three types of palm residues. J Mater Res Technol 10:526–537

    Article  CAS  Google Scholar 

  93. Zhang S et al (2019) Preparation of spherical nanocellulose from waste paper by aqueous NaOH/thiourea. Cellulose 26:5177–5185

    Article  CAS  Google Scholar 

  94. Tahir PM, Zaini LH, Jonoobi M, and Abdul Khalil H (2015) Preparation of nanocellulose from kenaf (Hibiscus cannabinus L.) via chemical and chemo-mechanical processes. In: Handbook of polymer nanocomposites. processing, performance and application: volume C: polymer nanocomposites of cellulose nanoparticles, pp 119–144

  95. Etuk VE, Oboh IO, Etuk BR, Johnson, and Egemba K (2018) Nanocellulose: types, sythesis and applications. In: The European conference on sustainability, energy & the environment 2018 official conference proceedings, 2018.

  96. Kumari S, Chauhan R, Mishra A, Kumar P (2021) A review on nanocellulose and its potential biomedical applications. Trends Biomater Artif Organs 35(3):2021

    Google Scholar 

  97. Rambabu N, PAnthapulakkal S, Sain M, Dalai A (2016) Production of anocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Ind Crops Products 83:746–754

    Article  CAS  Google Scholar 

  98. Barbash V, Yaschenko O, Alushkin S, Kondratyuk A, Posudievsky OY, Koshechko V (2016) The effect of mechanochemical treatment of the cellulose on characteristics of nanocellulose films. Nanoscale Res Lett 11:1–8

    Article  CAS  Google Scholar 

  99. Nasir M, Hashim R, Sulaiman O, Asim M (2017) Nanocellulose: preparation methods and applications. Cellulose-reinforced nanofibre composites. Elsevier, Hoboken, pp 261–276

    Chapter  Google Scholar 

  100. Li J et al (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohyd Polym 90(4):1609–1613

    Article  CAS  Google Scholar 

  101. Ang S, Haritos V, Batchelor W (2019) Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption. Cellulose 26:4767–4786

    Article  CAS  Google Scholar 

  102. Wang Y et al (2015) Study on nanocellulose by high pressure homogenization in homogeneous isolation. Fibers Polym 16:572–578

    Article  Google Scholar 

  103. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Sugarcane bagasse: a promising source for the production of nanocellulose. J Polym Compos 2(3):23–27

    Google Scholar 

  104. Cherian BM, Leão AL, De Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohyd Polym 81(3):720–725

    Article  CAS  Google Scholar 

  105. Júnior MAD, Borsoi C, Hansen B, Catto AL (2019) Evaluation of different methods for extraction of nanocellulose from yerba mate residues. Carbohyd Polym 218:78–86

    Article  Google Scholar 

  106. Zhang Y, Chen J, Zhang L, Zhan P, Liu N, Wu Z (2020) Preparation of nanocellulose from steam exploded poplar wood by enzymolysis assisted sonication. Mater Res Express 7(3):035010

    Article  CAS  Google Scholar 

  107. Gemmer RE et al (2022) Extraction of nanocellulose from yerba mate residues using steam explosion, TEMPO-mediated oxidation and ultra-fine friction grinding. J Nat Fibers 19(15):10539–10549

    Article  CAS  Google Scholar 

  108. Harini K, Ramya K, Sukumar M (2018) Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohyd Polym 201:329–339

    Article  CAS  Google Scholar 

  109. Chowdhury ZZ et al (2019) Extraction of cellulose nano-whiskers using ionic liquid-assisted ultra-sonication: optimization and mathematical modelling using box-behnken design. Symmetry 11(9):1148

    Article  CAS  Google Scholar 

  110. Isogai A (2021) Emerging nanocellulose technologies: recent developments. Adv Mater 33(28):2000630

    Article  CAS  Google Scholar 

  111. Kiziltas EE, Kiziltas A, Blumentritt M, Gardner DJ (2015) Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohyd Polym 129:148–155

    Article  Google Scholar 

  112. Lin S-P, Loira Calvar I, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5):2191–2219

    Article  CAS  Google Scholar 

  113. Le Bras D, Strømme M, Mihranyan A (2015) Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. J Phys Chem B 119(18):5911–5917

    Article  PubMed  Google Scholar 

  114. Daud JB and Lee KY (2017) Surface modification of nanocellulose. In: Handbook of nanocellulose and cellulose nanocomposites, vol. 1, pp 101-122

  115. Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innov Res Sci Eng Technol 2(10):5444–5451

    Google Scholar 

  116. Abushammala H, Mao J (2019) A review of the surface modification of cellulose and nanocellulose using aliphatic and aromatic mono-and di-isocyanates. Molecules 24(15):2782

    Article  PubMed  PubMed Central  Google Scholar 

  117. Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28(6):475–508

    Article  Google Scholar 

  118. Wang X, Yao C, Wang F, Li Z (2017) Cellulose-based nanomaterials for energy applications. Small 13(42):1702240

    Article  Google Scholar 

  119. Du X, Zhang Z, Liu W, Deng Y (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices-A review. Nano Energy 35:299–320

    Article  CAS  Google Scholar 

  120. Kim JH, Lee D, Lee YH, Chen W, Lee SY (2019) Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Adv Mater 31(20):1804826

    Article  Google Scholar 

  121. Cao Y (2018) Applications of cellulose nanomaterials in pharmaceutical science and pharmacology. Express Polym Lett 12(9):768–780

    Article  CAS  Google Scholar 

  122. Aziz T et al (2021) Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ 29:2062–2071

    Article  CAS  Google Scholar 

  123. Salimi S, Sotudeh-Gharebagh R, Zarghami R, Chan SY, Yuen KH (2019) Production of nanocellulose and its applications in drug delivery: a critical review. ACS Sustain Chem Eng 7(19):15800–15827

    Article  CAS  Google Scholar 

  124. Peng Z, Lin Q, Tai Y-AA, Wang Y (2020) Applications of cellulose nanomaterials in stimuli-responsive optics. J Agric Food Chem 68(46):12940–12955

    Article  CAS  PubMed  Google Scholar 

  125. Nasseri R, Deutschman C, Han L, Pope M, Tam K (2020) Cellulose nanocrystals in smart and stimuli-responsive materials: a review. Mater Today Adv 5:100055

    Article  Google Scholar 

  126. Zhu Q et al (2020) Stimuli-responsive cellulose nanomaterials for smart applications. Carbohyd Polym 235:115933

    Article  CAS  Google Scholar 

  127. Carpenter AW, de Lannoy C-F, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49(9):5277–5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu Y, Liu H, Shen Z (2021) Nanocellulose based filtration membrane in industrial waste water treatment: a review. Materials 14(18):5398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mautner A (2020) Nanocellulose water treatment membranes and filters: a review. Polym Int 69(9):741–751

    Article  CAS  Google Scholar 

  130. Malakhov A, Anokhina T, Petrova D, Vinokurov V, Volkov A (2018) Nanocellulose as a component of ultrafiltration membranes. Pet Chem 58:923–933

    Article  CAS  Google Scholar 

  131. Mautner A et al (2015) Cellulose nanopapers as tight aqueous ultra-filtration membranes. React Funct Polym 86:209–214

    Article  CAS  Google Scholar 

  132. Sharma PR, Sharma SK, Lindström T, Hsiao BS (2020) Nanocellulose-enabled membranes for water purification: perspectives. Adv Sustain Syst 4(5):1900114

    Article  CAS  Google Scholar 

  133. Gupta VK, Pathania D, Singh P, Rathore BS, Chauhan P (2013) Cellulose acetate–zirconium (IV) phosphate nano-composite with enhanced photo-catalytic activity. Carbohyd Polym 95(1):434–440

    Article  CAS  Google Scholar 

  134. Muhmed S et al (2020) Emerging chitosan and cellulose green materials for ion exchange membrane fuel cell: a review. Energy Ecol Environ 5:85–107

    Article  Google Scholar 

  135. Vilela C, Silvestre AJ, Figueiredo FM, Freire CS (2019) Nanocellulose-based materials as components of polymer electrolyte fuel cells. J Mater Chem A 7(35):20045–20074

    Article  CAS  Google Scholar 

  136. Kizling M et al (2015) Pseudocapacitive polypyrrole–nanocellulose composite for sugar-air enzymatic fuel cells. Electrochem Commun 50:55–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belete Baye Gelaw.

Ethics declarations

Conflict of interest

We, the authors, declare that we have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gelaw, B.B., Kasaew, E., Belayneh, A. et al. Review of the sources, synthesis, and applications of nanocellulose materials. Polym. Bull. (2023). https://doi.org/10.1007/s00289-023-05061-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-023-05061-4

Navigation