Skip to main content
Log in

Preparation of dendrimer/TiO2 polysulfone nanofiltration membrane to improve antibacterial, antifouling and separation performance of contaminants (heavy metals, salts, dyes)

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Modification of polysulfone nanofiltration membranes with the integration of titanium dioxide (TiO2)/dendrimer was performed to investigate their performance in the removal of some kinds of impurities from water solutions, separately. Also, the antibacterial properties of the membranes were studied in a laboratory scale. Membrane preparation was performed by interfacial polymerization method. TiO2 nanoparticles were integrated into the membranes at different contents of 0%, 0.1%, 0.5% and 1 wt.% coded M0, M1, M2 and M3, respectively. The membranes were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electronic microscopy, atomic force microscope, X-ray diffraction and water contact angle test. The performance of different membranes to remove heavy metals: strontium (Sr), copper (Cu), lead (Pb) and cobalt (Co), and salts: sodium chloride (NaCl), sodium carbonate (Na2CO3) and potassium nitrate (KNO3), and also dyes: scientist yellow and malachite green in aqueous solutions was investigated. Results showed that the modified membrane of M2 had the best performance compared to other membranes, which can be according to the better distribution of nanoparticles into the membrane surface. Result also showed that the higher content of TiO2 modified with dendrimer, the greater antibacterial properties of nanofiltration membranes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hashemibeni M, Ameri E, Hashemibeni J, Seifi H (2022) Synthesis of nanocomposite membranes embedded with cellulose nanocrystals and their application to filtrate of arsenic aqueous solutions. Desalin Water Treat 247:17–27

    Article  CAS  Google Scholar 

  2. Ghorbani M, Vakili MH, Ameri E (2021) Fabrication and evaluation of a biopolymer-based nanocomposite membrane for oily wastewater treatment. Mater Today Commun 28:102560

    Article  CAS  Google Scholar 

  3. Atazadeh A, Ameri E (2021) Synthesis of PMHS–PDMS composite membranes embedded with silica nanoparticles and their application to separate of DMSO from aqueous solutions. Polym Bull 78(9):5003–5028

    Article  CAS  Google Scholar 

  4. Hosseini M, Ameri E (2017) Pervaporation characteristics of a PDMS/PMHS membrane for removal of dimethyl sulfoxide from aqueous solutions. Vacuum 141:288–295

    Article  CAS  Google Scholar 

  5. Ameri E, Moheb A, Roodpeyma Sh (2010) Vapor-permeation-aided esterification of isopropanol/propionic acid using NaA and PERVAP® 2201 membranes. Chem Eng J 162:355–363

    Article  CAS  Google Scholar 

  6. Akbarian Fakhar A, Ameri E, Sadeghi M (2018) Gas-separation behavior of poly(ether sulfone)–poly(ethylene glycol) blend membranes. Appl Polym Sci 135(44):46845

    Article  Google Scholar 

  7. Torabi B, Ameri E (2016) Methyl acetate production by coupled esterification-reaction process using synthesized cross-linked PVA/silica nanocomposite membranes. Chem Eng J 288:461–472

    Article  CAS  Google Scholar 

  8. Shameli A, Ameri E (2017) Synthesis of cross-linked PVA membranes embedded with multi-wall carbon nanotubes and their application to esterification of acetic acid with methanol. Chem Eng J 309:381–396

    Article  CAS  Google Scholar 

  9. Salahchini Javanmardi M, Ameri E (2020) Pervaporation characteristics of PDMS/PMHS nanocomposite membranes inclusive multi-walled carbon nanotubes for improvement of acetic acid- methanol esterification reaction. Polym Bull 77:2591–2609

    Article  CAS  Google Scholar 

  10. Zare B, Ameri E, Sadeghi M (2021) Dehydration of natural gas using polyether sulfone (PES) membrane and its nanocomposite with silica particles and nitrogen sweeping gas. Chem Methodol 5(4):308–316

    CAS  Google Scholar 

  11. Tamiji T, Ameri E (2017) Preparation, characterization, and gas permeation properties of blend membranes of polysulfone and polyethylene glycol inclusive alumina nanoparticles. Int J Environ Sci Technol 14:1235–1242

    Article  CAS  Google Scholar 

  12. Suhas DP, Aminabhavi TM, Jeong HM, Raghu AV (2015) Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Adv 5:100984–100995

    Article  CAS  Google Scholar 

  13. Suhas DP, Aminabhavi TM, Raghu AV (2014) para-Toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of isopropanol. Appl Clay Sci 101:419–429

    Article  CAS  Google Scholar 

  14. Boo B, Elimelech M, Hong S (2013) Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation. J Membr Sci 444:148–156

    Article  CAS  Google Scholar 

  15. Alipour B, Poorafshari Chenar M, Azizi Namghi, H, Amarlu R (2015), The effect of polysulfony support layer manufacturing parameters on thin film composite membrane performance using design of experiments, The second national conference on membranes and membrane processes, Iran, 45–67.

  16. Takeuchi K, Takizawa Y, Kitazawa H, Fujii M, Hosaka K, Ortiz-Medina J, Morelos-Gomez A, Cruz-Silva R, Fujishige M, Akuzawa N, Endo M (2018) Salt rejection behavior of carbon nanotube-polyamide nanocomposite reverse osmosis membranes in several salt solutions. Desalination 443:165–171

    Article  CAS  Google Scholar 

  17. Kim TH, Lee Y, Yang J, Park C (2004) Decolorization of dye solutions by a membrane bioreactor (MBR) using White-rot Fungi. Desalination 168:287–293

    Article  CAS  Google Scholar 

  18. Robinson T, Mc Mullan JR, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  PubMed  Google Scholar 

  19. Koyuncu I (2002) Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity. Desalination 143:243–253

    Article  CAS  Google Scholar 

  20. Al-Aseeri M, Bu-Ali Q, Haji S, Al-Bastaki N (2007) Removal of acid red and sodium chloride mixture from aqueous solutions using nanofiltration. Desalination 206:407–413

    Article  CAS  Google Scholar 

  21. Fadhil Abid M, Abdulahad Zablouk M, Muhssen Abid-Alameer A (2012) Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iranian J Environ Health Sci Eng 9:17

    Article  Google Scholar 

  22. Safarpour M, Vatanpour V, Khataee A (2015) Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 393:65–78

    Article  Google Scholar 

  23. Sottoa A, Boromand A, Baltab S, Darvishmanash S, Kimd J, Van der Bruggen B (2011) Nanofiltration membranes enhanced with TiO2 nanoparticles: a comprehensive study, Desalination. Water Treat 34:179–183

    Article  Google Scholar 

  24. Jyothi MS, Padaki M, Geetha Balakrishna R, Krishna Pai R (2014) Synthesis and design of PSf/TiO2 composite membranes for reduction of chromium (VI): stability and reuse of the product and the process. J Mater Res 29(14):1537–1545

    Article  CAS  Google Scholar 

  25. Batool M, Shafeeq A, Haider B, Ahmad NM (2021) TiO2 Nanoparticle filler-Based mixed-matrix PES/CA nanofiltration membranes for enhanced desalination. Membranes 11:433–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fatemi SM, Fatemi SJ, Abbasi Z (2020) PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies. Polym Bull 77:6671–6691

    Article  CAS  Google Scholar 

  27. Saenz de Jubera AM, Gao Y, Moore JS, Cahill DG, Mariñas BJ (2012) Enhancing the performance of nanofiltration membranes by modifying the active layer with aramide dendrimers. Environ Sci Technol 46:9592–9599

    Article  CAS  Google Scholar 

  28. Yunessnia Lehi A, Akbari A (2017) A Novel nanofiltration membrane prepared with PAMAM and graphene oxide for desalination. J Nanostruct 7(4):331–337

    Google Scholar 

  29. Karpuraranjith M, Thambidurai S (2017) Chitosan/zinc oxide-polyvinylpyrrolidone (CS/ZnO-PVP) nanocomposite for better thermal and antibacterial activity. Int J Biol Macromol 104:1753–1761

    Article  CAS  PubMed  Google Scholar 

  30. Salimi M, Pirouzfar V (2018) Preparation and characterization of a novel MMMs by comprising of PSF–HNT/TiO2 nanotubes to reduce organic sediments. Polym Bull 75:2285–2299

    Article  CAS  Google Scholar 

  31. Shankar S, Teng X, Li G, Rhim JW (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll 45:264–271

    Article  CAS  Google Scholar 

  32. Zahedi Y, Fathi-Achachlouei B, Yousefi AR (2018) Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites. Int J Biol Macromol 108:863–873

    Article  CAS  PubMed  Google Scholar 

  33. Emadzadeh D, Lau WJ, Rahbari-Sisakht M, Ilbeygi H, Rana D, Matsuura T, Ismail AF (2015) Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application. Chem Eng J 281:243–251

    Article  CAS  Google Scholar 

  34. Gupta N, Santhiya D, Aditya A, Badra K (2015) Dendrimer templated bioactive glass-ceramic nanovehicle for gene delivery applications. RSC Adv 5:56794

    Article  CAS  Google Scholar 

  35. Vijayalakshmi R, Rajendran V (2012) ynthesis and characterization of nano-TiO2 via different methods. Arch Appl Sci Res 4:1183–1190

    CAS  Google Scholar 

  36. Vatanpour V, Madaeni SS, Khataee AR, Salehi E, Zinadini S, Ahmadi Monfared H (2012) TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination 292:19–29

    Article  CAS  Google Scholar 

  37. Dimiev AM, Alemany LB, Tour JM (2012) Graphene oxide Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 7:576–588

    Article  PubMed  Google Scholar 

  38. YunessniaLehi A, Akbari A (2017) A novel nanofiltration membrane prepared with PAMAM and graphene oxide for desalination. J Nanostruct 7:331–337

    Google Scholar 

  39. Zhang RX, Braeken L, Luis P, Wang XL, Van der Bruggen B (2013) Novel binding procedure of TiO2 nanoparticles to thin film composite membranes via self-polymerized polydopamine. J Membr Sci 437:179–188

    Article  CAS  Google Scholar 

  40. Vatanpour V, Safarpour M, Khataee A, Zarrabi H, Yekavalangi ME, Kavian M (2017) A thin film nanocomposite reverse osmosis membrane containing amine-functionalized carbon nanotubes. Sep Purif Technol 184:135–143

    Article  CAS  Google Scholar 

  41. Goh K, Setiawan L, Wei L, Si R, Fane AG, Wang R, Chen Y (2015) Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process. J Membr Sci 474:244–253

    Article  CAS  Google Scholar 

  42. Liu C, Faria AF, Ma J, Elimelech M (2016) Mitigation of biofilm development on thin-film composite membranes functionalized with zwitterionic polymers and silver nanoparticles. Environ Sci Technol 51:182–191

    Article  PubMed  Google Scholar 

  43. Adeniyi A, Gonzalez-Ortiz D, Pochat-Bohatier C, Oyewo O, Sithole B, Onyango M (2020) Incorporation of cellulose nanocrystals (CNC) derived from sawdust into polyamide thin-film composite membranes for enhanced water recovery. Alex Eng J 59(6):4201–4210

    Article  Google Scholar 

  44. Arsuaga JM, López-Muñoz MJ, Sotto A (2010) Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes. Desalination 250:829–832

    Article  CAS  Google Scholar 

  45. Braeken L, Boussu K, Van der Bruggen B, Vandecasteele C (2005) Modeling of the adsorption of organic compounds on polymeric nanofiltration membranes in solutions containing two compounds. Chem Phys Chem 6:1606–1612

    Article  CAS  PubMed  Google Scholar 

  46. Chougale R, Kasai D, Nayak Sh, Masti S, Nasalapure A, Raghu AV (2020) Design of eco-friendly PVA/TiO2-based nanocomposites and their antifungal activity study. Green Matert 8:40–48

    Article  Google Scholar 

  47. Gulati R, Sharma S, Kumar Sharma R (2022) Antimicrobial textile: recent developments and functional perspective. Polym Bull 79:5747–5771

    Article  CAS  Google Scholar 

  48. Kannan K, Radhika D, Reddy KR, Raghu AV, Sadasivuni KK, Palani G, Gurushankar K (2021) Gd3+ and Y3+ co-doped mixed metal oxide nanohybrids for photocatalytic and antibacterial applications. Nano Express 2:010014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Ameri.

Ethics declarations

Conflict of interest

All authors have participated in (a) conceptualization, design, and/or analysis and interpretation of the data; (b) drafting or editing the article, meaningfully contributing to intellectual content; and (c) approval of the final version. This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbaran, H., Ameri, E. & Dehghani, B. Preparation of dendrimer/TiO2 polysulfone nanofiltration membrane to improve antibacterial, antifouling and separation performance of contaminants (heavy metals, salts, dyes). Polym. Bull. 81, 1471–1494 (2024). https://doi.org/10.1007/s00289-023-04785-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04785-7

Keywords

Navigation