Skip to main content
Log in

Preparation and characterization of a novel MMMs by comprising of PSF–HNT/TiO2 nanotubes to reduce organic sediments

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Antifouling properties of ultrafiltration-mixed matrix nanocomposite membranes which are combined of polysulfone (PSF) and nanotubes composed of titanium dioxide and clay (HNT/TiO2) were studied. The membrane was prepared by phase separation process using different concentrations of HNT/TiO2 and polysulfone. Morphology (combination) of membrane was determined using a scanning electron microscope and atomic force microscopy. The most important observation was the significant improvement in water flow, which was attributed to improved hydrophilic property. Improved hydrophilic property was approved by water contact angle and porosity measurements. This improvement in hydrophilic property due to the presence of hydroxyl groups on HNT/TiO2 which was determined by (FTIR) spectrum. Fouling resistance of investigated membranes by solution filtration BSA showed that the membranes with 1 and 2% by weight HNT/TiO2 have the best antifouling property, which resulted in flow recovery. The effects of different directions of washing in sediment tests were reported. Vertical washing and parallel washing in period of sediment tests were performed and the effects were evaluated. Nanocomposite membrane HNT/TiO2 with parallel washing showed a significant reusable during filtration. PSF and PSF–HNT/TiO2 (0.5 wt%) showed severe rejection nearly 100%, while this high ability was not observed for membranes with higher percent of HNT/TiO2. In addition, the experimental results confirm that the antifouling on the membranes of pure PSF and PSF–HNT/TiO2 (0.5 wt%), molecules after infection with BSA, is not able to recover their ability to the initial permeability, while the membranes with higher percent HNT/TiO2 show good current recover after washing with pure water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MMMs:

Mixed matrix membranes

SEM:

Scanning electron microscope

DSC:

Differential scanning calorimetry

PSF:

Polysulfone

P :

Permeability (1 Barrer = 1 × 10–10 cm3 (STP)-cm/cm2 s cmHg)

P 0 :

Feed pressure (Pa)

R :

Gas constant (8.314 J/K mol)

S :

Ideal selectivity (P A/P B)

T :

Temperature (K)

References

  1. Oh BK, Park CK, Lee YM (1993) Dehydration of aqueous pyridine solution through crosslinked chitosan membrane. Polym Bull 31:723–728

    Article  CAS  Google Scholar 

  2. Bai RK, Huang MY, Jiang YY (1988) Selective permeabilities of chitosan–acetic acid complex membrane and chitosan-polymer complex membranes for oxygen and carbon dioxide. Polym Bull 20:83–88

    Article  CAS  Google Scholar 

  3. Kunugi S, Tatsukawa K, Nakajima T, Nomura A, Tanaka A (1989) Orientation of bacteriorhodopsin in non-aqueous polymer membrane. Polym Bull 21:59–62

    Article  CAS  Google Scholar 

  4. Pirouzfar V, Hosseini SS, Omidkhah MR (2014) Modeling and optimization of gas transport characteristics of carbon molecular sieve membranes through statistical analysis. Polym Eng Sci 54(1):147–157

    Article  CAS  Google Scholar 

  5. Soleymanipour SF, Saiedi AH, Pirouzfar V, Alihosseini A (2016) Morphology and gas separation performance of membranes comprising of multi-wall carbon nanotubes/polysulfone–Kapton. J Appl Polym Sci. doi:10.1002/app.43839

    Article  Google Scholar 

  6. Heydari Sh, Pirouzfar V (2016) The influence of synthesis parameters on the gas selectivity and permeability of carbon membranes: empirical modeling and process optimization by response surface. RSC Adv 6:14149–14163

    Article  CAS  Google Scholar 

  7. Salimi M, Pirouzfar V, Kianfar E (2017) Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polym Sci Ser A 59(4):566–574

  8. Salimi M, Pirouzfar V, Kianfar E (2017) Enhanced gas transport properties in silica nanoparticles filler-polystyrene nanocomposite membranes. Colloid Polym Sci 295(1):215–226

    Article  CAS  Google Scholar 

  9. Jamshidi M, Pirouzfar V (2017) Influence of nanoparticles on gas transport properties of mixed matrix membranes: experimental investigation and modeling. Korean J Chem Eng. doi:10.1007/s11814-016-0302-4

    Article  Google Scholar 

  10. Nematollahi MH, Saiedi AH, Pirouzfar V, Akhondi E (2016) Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticles fillers for CO2/N2 separation. Macromol Res 24(9):782–792

    Article  CAS  Google Scholar 

  11. Pirouzfar V, Omidkhah MR (2016) Mathematical modeling and optimization of gas transport through carbon molecular sieve membrane and determining the model parameters using genetic algorithm. Iran Polym J 25(3):203–212

    Article  CAS  Google Scholar 

  12. Pirouzfar V, Omidkhah MR, Moghaddam AZ (2014) Investigating the effect of dianhydride type and pyrolysis condition on the gas separation performance of membranes derived blended polyimides through statistical analysis. J Ind Eng Chem 20(3):1061–1070

    Article  CAS  Google Scholar 

  13. Rahimpour A (2011) UV photo-grafting of hydrophilic monomers onto the surface of nano-porous PES membranes for improving surface properties. Desalination 265(1–3):93–101

    Article  CAS  Google Scholar 

  14. Padaki M, Isloor AM, Kumar R, Ismail AF, Matsuura T (2013) Synthesis, characterization and desalination study of composite NF membranes of novel poly[(4-aminophenyl)sulfonyl]butanediamide (PASB) and methyalated poly[(4-aminophenyl)sulfonyl]butanediamide (mPASB) with polysulfone (PSf). J Membr Sci 428:489–497

    Article  CAS  Google Scholar 

  15. Chapman J, Lawlor A, Weir E, Quilty B, Regan F (2010) Phthalate doped PVC membranes for the inhibition of fouling. J Membr Sci 365:180–187

    Article  CAS  Google Scholar 

  16. Maguire-Boyle SJ, Barron AR (2011) A new functionalization strategy for oil/water separation membranes. J Membr Sci 382:107–115

    Article  CAS  Google Scholar 

  17. Ba C, Economy J (2010) Preparation and characterization of a neutrally charged antifouling nanofiltration membrane by coating a layer of sulfonated poly(ether ether ketone) on a positively charged nanofiltration membrane. J Membr Sci 362:192–201

    Article  CAS  Google Scholar 

  18. Yan L, Li YS, Xiang CB, Xianda S (2006) Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J Membr Sci 276:162–167

    Article  CAS  Google Scholar 

  19. Jeon J-D, Kim M-J, Kwak S-Y (2006) Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous (PVdF-HFP)/P(EO-EC)membranes. J Power Sources 162:1304–1311

    Article  CAS  Google Scholar 

  20. Nagarale RK, Gohil GS, Shahi VK, Rangarajan R (2004) Organic–inorganic hybrid membrane: thermally stable cation-exchange membrane prepared by the sol–gel method. Macromolecules 37:10023–10030

    Article  CAS  Google Scholar 

  21. Madaeni SS, Enayati E, Vatanpour V (2011) Separation of nitrogen and oxygen gases by polymericmembrane embedded with magnetic nano-particle. Polym Adv Technol 22:2556–2563

    Article  CAS  Google Scholar 

  22. Jian P, Yahui H, Yang W, Linlin L (2006) Preparation of polysulfone–Fe3O4 composite ultrafiltration membrane and its behavior in magnetic field. J Membr Sci 284:9–16

    Article  CAS  Google Scholar 

  23. Soroko AL (2009) Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. J Membr Sci 343:189–198

    Article  CAS  Google Scholar 

  24. Mansourpanah Y, Madaeni SS, Rahimpour A, Adeli M, Hashemi MY, Moradian MR (2011) Fabrication new PES-based mixed matrix nanocomposite membranes using polycaprolactone modified carbon nanotubes as the additive: property changes and morphological studies. Desalination 277:171–177

    Article  CAS  Google Scholar 

  25. Luo M-L, Zhao J-Q, Tang W, Pu CS (2005) Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Appl Surf Sci 249:76–84

    Article  CAS  Google Scholar 

  26. Wang XM, Li XY, Shih K (2011) In situ embedment and growth of anhydrous and hydrated aluminum oxide particles on polyvinylidene fluoride (PVDF) membranes. J Membr Sci 368:134–143

    Article  CAS  Google Scholar 

  27. Yan L, Hong S, Li ML, Li YS (2009) Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep Purif Technol 66:347–352

    Article  CAS  Google Scholar 

  28. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294

    Article  CAS  Google Scholar 

  29. Madaeni SS, Zinadini S, Vatanpour V (2011) A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J Membr Sci 380:155–162

    Article  CAS  Google Scholar 

  30. Vatanpour V, Madaeni SS, Rajabi L, Zinadini S, Derakhshan AA (2012) Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membrane. J Membr Sci 401–402:132–143

    Article  CAS  Google Scholar 

  31. Yu H, Zhang Y, Sun X, Liu J, Zhang H (2014) Improving the antifouling property of polyethersulfone ultrafiltration membrane by incorporation of dextran grafted halloysite nanotubes. Chem Eng J 237:322–328

    Article  CAS  Google Scholar 

  32. Pavasupree S, Ngamsinlapasathian S, Suzuki Y, Yoshikawa S (2006) One-dimensional nanostructured TiO2 for photocatalytic activity and dye-sensitized solar cells applications. In: The 2nd joint international conference on sustainable energy and environment, Bangkok, Thailand

  33. Akita H, Hattori T (1999) Studies on molecular composite. I. Processing of molecular composites using a precursor polymer for poly(p-phenylene benzobisthiazole). J Polym Sci Part B Polym Phys 37:189–197

    Article  CAS  Google Scholar 

  34. Liang S, Kang Y, Tiraferri A, Giannelis EP, Huang X, Elimelech M (2013) Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles. Appl Mater 5(14):6694–6703

    Article  CAS  Google Scholar 

  35. Zeng G, He Y, Zhan Y, Zhang L, Shi H, Yu Z (2016) Preparation of a novel poly(vinylidene fluoride) ultrafiltration membrane by incorporation of 3-aminopropyltriethoxysilane-grafted halloysite nanotubes for oil/water separation. Ind Eng Chem Res 55(6):1760–1767

    Article  CAS  Google Scholar 

  36. Kaasalainen M, Aseyev V, Haartman EV, Karaman DŞ, Mäkilä E, Tenhu H, Rosenholm J, Salonen J (2017) Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res Lett 12:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ionita M, Vasile E, Elena Crica L, Ioan Voicu S, Madalina Pandele A, Dinescu S, Predoiu L, Galateanu B, Hermenean A, Costache M (2015) Synthesis, characterization and in vitro studies of polysulfone/graphene oxide composite membranes. Compos Part B 72(2015):108–115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Salimi.

Ethics declarations

Funding

There is not funding to report for this submission.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, M., Pirouzfar, V. Preparation and characterization of a novel MMMs by comprising of PSF–HNT/TiO2 nanotubes to reduce organic sediments. Polym. Bull. 75, 2285–2299 (2018). https://doi.org/10.1007/s00289-017-2145-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2145-5

Keywords

Navigation