Skip to main content
Log in

Effect of amphiphilic phosphorous dendrons on the conformation, secondary structure, and zeta potential of albumin and thrombin

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Amphiphilic dendrons are highly branched synthetic polymeric soft nanoparticles that possess properties of both dendrimers and micelles. Such properties allow dendrons to become promising delivery systems for targeted delivery. While much attention is focused on the design and biological effect of a drug-delivery system, the nature of its interaction with surrounding tissues—their biocompatibility—is crucial for further optimization. The biocompatibility and biological effects of some amphiphilic phosphorus dendrons on human serum albumin and thrombin are investigated in this report. The results from protein fluorescence, circular dichroism, and zeta potential experiments showed that the dendrons of the first generation have a lesser impact on protein molecules than the dendrons of the second generation and therefore tend to be more biocompatible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gutierrez-Ulloa CE, Buyanova MY, Apartsin EK et al (2017) Amphiphilic carbosilane dendrons as a novel synthetic platform toward micelle formation. Org Biomol Chem 15:7352–7364. https://doi.org/10.1039/c7ob01331k

    Article  CAS  PubMed  Google Scholar 

  2. Concellón A, Anselmo MS, Hernández-Ainsa S et al (2020) Micellar nanocarriers from dendritic macromolecules containing fluorescent coumarin moieties. Polymers (Basel) 12:1–11. https://doi.org/10.3390/polym12122872

    Article  CAS  Google Scholar 

  3. Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V et al (2019) Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J 119:61–73. https://doi.org/10.1016/j.eurpolymj.2019.07.013

    Article  CAS  Google Scholar 

  4. Zhao W, Yang S, Li C et al (2022) Amphiphilic dendritic nanomicelle-mediated delivery of gemcitabine for enhancing the specificity and effectiveness. Int J Nanomedicine 17:3239–3249. https://doi.org/10.2147/IJN.S371775

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen J, Zhu D, Liu X, Peng L (2021) Amphiphilic dendrimer vectors for RNA delivery: state-of-the-art and future perspective. Acc Mater Res. https://doi.org/10.1021/accountsmr.1c00272

    Article  Google Scholar 

  6. Chen L, Cao L, Zhan M et al (2022) Engineered stable bioactive per se amphiphilic phosphorus dendron nanomicelles as a highly efficient drug delivery system to take down breast cancer in vivo. Biomacromol. https://doi.org/10.1021/acs.biomac.2c00197

    Article  Google Scholar 

  7. Ou JY, Shih YC, Wang BY, Chu CC (2019) Photodegradable coumarin-derived amphiphilic dendrons for DNA binding: self-assembly and phototriggered disassembly in water and air-water interface. Colloids Surf B Biointerfaces 175:428–435. https://doi.org/10.1016/j.colsurfb.2018.12.018

    Article  CAS  PubMed  Google Scholar 

  8. Garrigue P, Tang J, Ding L et al (2018) Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc Natl Acad Sci U S A 115:11454–11459. https://doi.org/10.1073/pnas.1812938115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hayder M, Poupot M, Baron M et al (2011) A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3002212

    Article  PubMed  Google Scholar 

  10. Blattes E, Vercellone A, Eutamène H et al (2013) Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment. Proc Natl Acad Sci U S A 110:8795–8800. https://doi.org/10.1073/pnas.1221708110

    Article  PubMed  PubMed Central  Google Scholar 

  11. Posadas I, Romero-Castillo L, El Brahmi N et al (2017) Neutral high-generation phosphorus dendrimers inhibit macrophage-mediated inflammatory response in vitro and in vivo. Proc Natl Acad Sci U S A 114:E7660–E7669. https://doi.org/10.1073/pnas.1704858114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bohr A, Tsapis N, Andreana I et al (2017) Anti-inflammatory effect of anti-TNF-α SiRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromol 18:2379–2388. https://doi.org/10.1021/acs.biomac.7b00572

    Article  CAS  Google Scholar 

  13. Mignani SM, El Brahmi N, El Kazzouli S et al (2017) Original multivalent gold(III) and dual gold(III)-copper(II) conjugated phosphorus dendrimers as potent antitumoral and antimicrobial agents. Mol Pharm 14:4087–4097. https://doi.org/10.1021/acs.molpharmaceut.7b00771

    Article  CAS  PubMed  Google Scholar 

  14. Mignani S, Bryszewska M, Klajnert-Maculewicz B et al (2015) Advances in combination therapies based on nanoparticles for efficacious cancer treatment: an analytical report. Biomacromol 16:1–27. https://doi.org/10.1021/bm501285t

    Article  CAS  Google Scholar 

  15. Mignani S, Tripathi VD, Soam D et al (2021) Safe polycationic dendrimers as potent oral in vivo inhibitors of mycobacterium tuberculosis: a new therapy to take down tuberculosis. Biomacromol 22:2659–2675. https://doi.org/10.1021/acs.biomac.1c00355

    Article  CAS  Google Scholar 

  16. Wasiak T, Ionov M, Nieznanski K et al (2012) Phosphorus dendrimers affect Alzheimer’s (Aβ 1–28) peptide and MAP-Tau protein aggregation. Mol Pharm 9:458–469. https://doi.org/10.1021/mp2005627

    Article  CAS  PubMed  Google Scholar 

  17. Ottaviani MF, Mazzeo R, Cangiotti M et al (2010) Time evolution of the aggregation process of peptides involved in neurodegenerative diseases and preventing aggregation effect of phosphorus dendrimers studied by EPR. Biomacromol 11:3014–3021. https://doi.org/10.1021/bm100824z

    Article  CAS  Google Scholar 

  18. Veliskova M, Zvarik M, Suty S et al (2022) In vitro interactions of amphiphilic phosphorous dendrons with liposomes and exosomes-implications for blood viscosity changes. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14081596

    Article  PubMed  PubMed Central  Google Scholar 

  19. Suty S, Oravczova V, Garaiova Z et al (2021) Blood compatibility of amphiphilic phosphorous dendrons—prospective drug nanocarriers. Biomedicines. https://doi.org/10.3390/biomedicines9111672

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qiu J, Chen L, Zhan M et al (2021) Facile synthesis of amphiphilic fluorescent phosphorus dendron-based micelles as antiproliferative agents: first investigations. Bioconjug Chem 32:339–349. https://doi.org/10.1021/acs.bioconjchem.0c00716

    Article  CAS  PubMed  Google Scholar 

  21. Belinskaia DA, Voronina PA, Batalova AA, Goncharov NV (2020) Serum albumin. Encyclopedia 1:65–75. https://doi.org/10.3390/encyclopedia1010009

    Article  Google Scholar 

  22. Curry S, Mandelkow H, Brick P, Franks N (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Biol 5:827–835. https://doi.org/10.1038/1869

    Article  CAS  PubMed  Google Scholar 

  23. Borisevich NA, Loznikova SG, Suhodola AA, Shcharbin DG (2021) Phosphorescence of thrombin. Dokl Natl Acad Sci Belarus 56:57–62

    Google Scholar 

  24. Di Cera E (2008) Thrombin. Mol Asp Med 29:203–254. https://doi.org/10.1016/j.mam.2008.01.001

    Article  CAS  Google Scholar 

  25. Clogston JD, Patri AK (2011) Zeta potential measurement. Methods Mol Biol 697:63–70. https://doi.org/10.1007/978-1-60327-198-1_6

    Article  CAS  PubMed  Google Scholar 

  26. Quinlan GJ, Martin GS, Evans TW (2005) Albumin: biochemical properties and therapeutic potential. Hepatology 41:1211–1219. https://doi.org/10.1002/hep.20720

    Article  CAS  PubMed  Google Scholar 

  27. Bhattacharjee S (2016) DLS and zeta potential: What they are and what they are not? J Control Releas 235:337–351. https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish National Agency for Academic Exchange, grant EUROPARTNER, No. PPI/APM/2018/1/00007/U/001; by the Slovak Research and Development Agency, grant APVV SK-BY-RD-19-0019; by the Belarusian Republican Foundation for Fundamental Research and State Committee of Science and Technology of Belarus, grants B20SLKG-002, B21KORG-001, B21TUB-001, B21RM-045, B21M-001. J.P. M thanks CNRS for financial support. S. M. was granted by FCT-Fundação para a Ciência e a Tecnologia (Base Fund UIDB/00674/2020 and Programmatic Fund UIDP/00674/2020, Portuguese Government Funds) and ARDITI-Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação through the project M1420-01-0145-FEDER-000005-CQM + (Madeira 14–20 Program).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was conducted by MT, JM, JQ, JPM, XS, SM, MI, IW, MB, DS; Nanoparticles were prepared by JQ, JPM; Experiments were carried out by MT, JM; Formal analysis and investigation were provided by MT, JM, MI, IW, MB, DS; Original draft was prepared by MT, DS; Review and editing was provided by JPM, MI, IW, DS; Funding was acquised by JPM, SM, IW, MB, DS; Supervision was provided by JPM, XS, SM, MI, IW, MB, DS.

Corresponding author

Correspondence to Maria Terehova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terehova, M., Magiera, J., Qiu, J. et al. Effect of amphiphilic phosphorous dendrons on the conformation, secondary structure, and zeta potential of albumin and thrombin. Polym. Bull. 80, 9181–9193 (2023). https://doi.org/10.1007/s00289-022-04512-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04512-8

Keywords

Navigation