Skip to main content
Log in

Investigation of properties and applications of ZnO polymer nanocomposites

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymer nanocomposites (PNCs) contain nanoparticles (NPs), with at least one dimension of 10–100 Å. Even though polymers have many applications, NPs are dispersed on the polymer matrix to widen their scope further. This leads to incremental effect on thermal, electrical and mechanical properties. Zinc oxide (ZnO) is one of the most promising NPs and is used extensively in industries, such as rubber, paint, coating and cosmetics. ZnO NPs become the most commonly used metal oxides in the past few decades due to their excellent biocompatibility, low toxicity and affordability. This review summarizes different ZnO-based PNCs and their applications in numerous fields, such as optoelectronics, sensors, biomedical devices, and packaging, among others. Along the way, we successfully investigate the role of specific polymers and their limitations in the application context.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kumar S, Nehra M, Dilbaghi N et al (2018) Progress in polymer science recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog Polym Sci 80:1–38. https://doi.org/10.1016/j.progpolymsci.2018.03.001

    Article  CAS  Google Scholar 

  2. Ahmad K, Electrochem J, Soc B et al (2018) Synthesis and characterization of an efficient hole-conductor free halide perovskite CH3NH3PbI3 semiconductor absorber based photovoltaic device for IOT. J Electrochem Soc 8:B3023–B3029. https://doi.org/10.1149/2.0051808jes

    Article  CAS  Google Scholar 

  3. Wei W, Yu D, Huang Q (2020) Preparation of Ag/TiO2 nanocomposites with controlled crystallization and properties as a multifunctional material for SERS and photocatalytic applications. Spectrochim Acta Part A Mol Biomol Spectrosc 243:118793. https://doi.org/10.1016/j.saa.2020.118793

    Article  CAS  Google Scholar 

  4. Frimpong RA, Fraser S, Hilt JZ (2006) Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites. Wiley InterScience. https://doi.org/10.1002/jbm.a

    Article  Google Scholar 

  5. Shameem MM, Sasikanth SM, Annamalai R, Raman RG (2020) A brief review on polymer nanocomposites and its applications. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.11.254

    Article  Google Scholar 

  6. Sharma S, Virk K, Sharma K et al (2020) Preparation of gum acacia-poly ( acrylamide-IPN-acrylic acid ) based nanocomposite hydrogels via polymerization methods for antimicrobial applications. J Mol Struct 1215:128298. https://doi.org/10.1016/j.molstruc.2020.128298

    Article  CAS  Google Scholar 

  7. Chakraborty S, Macar AR, Mary NL (2020) Biocompatible supercapacitor electrodes using green synthesised ZnO/polymer nanocomposites for efficient energy storage applications. J Energy Storage 28:101275. https://doi.org/10.1016/j.est.2020.101275

    Article  Google Scholar 

  8. Chundawat TS, Verma N, Vaya D (2021) Development in synthesis and coating applications of polyurethane. J Chilean Chem Soc 66:5142–5148

    Article  CAS  Google Scholar 

  9. Chandrakala HN, Ramaraj B, Shivakumaraiah A et al (2013) Polyvinyl alcohol/carbon coated zinc oxide nanocomposites: electrical, optical, structural and morphological characteristics. J Alloys Compd 580:392–400. https://doi.org/10.1016/j.jallcom.2013.06.091

    Article  CAS  Google Scholar 

  10. Ahmed R, Tariq M, Ali I et al (2018) International Journal of Biological Macromolecules Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nano fi brous mats withf antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol 120:385–393. https://doi.org/10.1016/j.ijbiomac.2018.08.057

    Article  CAS  PubMed  Google Scholar 

  11. Ramesan MT, Nidhisha V, Jayakrishnan P (2017) Synthesis, characterization and conducting properties of novel poly (vinyl cinnamate)/zinc oxide nanocomposites via in situ polymerization. Mater Sci Semicond Process 63:253–260. https://doi.org/10.1016/j.mssp.2017.02.027

    Article  CAS  Google Scholar 

  12. Chaturvedi A, Bajpai AK, Bajpai J, Singh SK (2016) Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials. Mater Sci Eng C 65:408–418. https://doi.org/10.1016/j.msec.2016.04.054

    Article  CAS  Google Scholar 

  13. Müller K, Bugnicourt E, Latorre M et al (2017) Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials. https://doi.org/10.3390/nano7040074

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bitinis N, Hernandez M, Verdejo R et al (2011) Recent advances in clay/polymer nanocomposites. Adv Mater 23:5229–5236. https://doi.org/10.1002/adma.201101948

    Article  CAS  PubMed  Google Scholar 

  15. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63. https://doi.org/10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  16. Dantas de Oliveira A, Augusto Gonçalves Beatrice C (2019) Polymer nanocomposites with different types of nanofiller. In: Nanocomposites—recent evolutions. IntechOpen

  17. Reynaud E, Gauthier C, Perez J (1999) Nanophases in polymers. La Revue de Métallurgie-CIT/Science et Génie des Matériaux Février 96:169–176. https://doi.org/10.1051/metal/199996020169

    Article  CAS  Google Scholar 

  18. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459–1476. https://doi.org/10.1016/j.compscitech.2012.05.005

    Article  CAS  Google Scholar 

  19. Rong MZ, Zhang MQ, Ruan WH (2006) Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. Mater Sci Technol 22:787–796. https://doi.org/10.1179/174328406X101247

    Article  CAS  Google Scholar 

  20. Albdiry MT, Yousif BF, Ku H, Lau KT (2013) A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites. J Compos Mater 47:1093–1115. https://doi.org/10.1177/0021998312445592

    Article  Google Scholar 

  21. Yadav P, Surolia PK, Vaya D (2021) Synthesis and application of copper ferrite-graphene oxide nanocomposite photocatalyst for the degradation of malachite green. Mater Today Proc 43:2949–2953. https://doi.org/10.1016/j.matpr.2021.01.301

    Article  CAS  Google Scholar 

  22. Verma N, Manju, Chundawat TS, Vaya D (2021) Role of N-ZnO/GO and Fe2O3-ZnO in photocatalytic activity. In: AIP conference proceedings, p 020083

  23. Vaya D, Kaushik B, Surolia PK (2022) Recent advances in graphitic carbon nitride semiconductor: structure, synthesis and applications. Mater Sci Semicond Process 137:106181. https://doi.org/10.1016/j.mssp.2021.106181

    Article  CAS  Google Scholar 

  24. Wu Y, Zhou Y, Xu H et al (2018) Highly active, superstable, and biocompatible Ag/polydopamine/g-C3N4 bactericidal photocatalyst: synthesis, characterization, and mechanism. ACS Sustain Chem Eng 6:14082–14094. https://doi.org/10.1021/acssuschemeng.8b02620

    Article  CAS  Google Scholar 

  25. Calvert P (1999) Nanotube composites: a recipe for strength. Nature 399:210–211. https://doi.org/10.1038/20326

    Article  CAS  Google Scholar 

  26. Mark JE (1996) Ceramic-reinforced polymers and polymer-modified ceramics. Polym Eng Sci 36:2905–2920. https://doi.org/10.1002/pen.10692

    Article  CAS  Google Scholar 

  27. Herron N, Thorn DL (1998) Nanoparticles: uses and relationships to molecular cluster compounds. Adv Mater 10:1173–1184. https://doi.org/10.1002/(SICI)1521-4095(199810)10:15%3c1173::AID-ADMA1173%3e3.0.CO;2-6

    Article  CAS  Google Scholar 

  28. Huang P, Shi HQ, Fu SY et al (2016) Greatly decreased redshift and largely enhanced refractive index of mono-dispersed ZnO-QD/silicone nanocomposites. J Mater Chem C 4:8663–8669. https://doi.org/10.1039/c6tc02047j

    Article  CAS  Google Scholar 

  29. Fu S, Sun Z, Huang P et al (2019) Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci 1:2–30. https://doi.org/10.1016/j.nanoms.2019.02.006

    Article  Google Scholar 

  30. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  31. Vidyavathi GT, Kumar BV, Raghu AV et al (2022) Punica granatum pericarp extract catalyzed green chemistry approach for synthesizing novel ligand and its metal(II) complexes: Molecular docking/DNA interactions. J Mol Struct 1249:131656. https://doi.org/10.1016/j.molstruc.2021.131656

    Article  CAS  Google Scholar 

  32. Heness G (2012) Metal–polymer nanocomposites. In: Advances in polymer nanocomposites: types and applications. Woodhead Publishing Limited, pp 164–177

  33. Yadav R, Chundawat TS, Surolia PK, Vaya D (2022) Photocatalytic degradation of textile dyes using β-CD-CuO/ZnO nanocomposite. J Phys Chem Solids 165:110691. https://doi.org/10.1016/j.jpcs.2022.110691

    Article  CAS  Google Scholar 

  34. Mir SH, Nagahara LA, Thundat T et al (2018) Review-organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J Electrochem Soc 165:B3137–B3156

    Article  CAS  Google Scholar 

  35. Owens GJ, Singh RK, Foroutan F et al (2016) Sol–gel based materials for biomedical applications. Prog Mater Sci 77:1–79. https://doi.org/10.1016/j.pmatsci.2015.12.001

    Article  CAS  Google Scholar 

  36. Mccarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy ☆. Adv Drug Deliv Rev 60:1241–1251. https://doi.org/10.1016/j.addr.2008.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mir SH, Ochiai B (2016) Development of hierarchical polymer@Pd nanowire-network: synthesis and application as highly active recyclable catalyst. ChemistryOpen 5:213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jain A, Vaya D (2017) Photocatalytic activity of TiO2 nanoparticles. J Chilean Chem Soc 62:3683–3691. https://doi.org/10.4067/s0717-7072017000403683

    Article  CAS  Google Scholar 

  39. Miranda M, Fernańdez A, Lopez-Esteban S, Malpartida F, Moya JSRT (2012) Ceramic/metal biocidal nanocomposites for bone-related applications. J Mater Sci Mater Med 23:1655–1662. https://doi.org/10.1007/s10856-012-4642-2

    Article  CAS  PubMed  Google Scholar 

  40. Som T, Karmakar B (2009) Surface plasmon resonance in nano-gold antimony glass–ceramic dichroic nanocomposites: one-step synthesis and enhanced fluorescence application. Appl Surf Sci 255:9447–9452. https://doi.org/10.1016/j.apsusc.2009.07.053

    Article  CAS  Google Scholar 

  41. Som T, Karmakar B (2010) Surface plasmon resonance and enhanced fluorescence application of single-step synthesized elliptical nano gold-embedded antimony glass dichroic nanocomposites. Plasmonics 5:149–159. https://doi.org/10.1007/s11468-010-9129-8

    Article  CAS  Google Scholar 

  42. Yanık MCÖ, Sarıgüzel M, Öztürk Y, Günay E (2017) An investigation of nanometal-glass hybrid nanocomposites produced by ion exchange and annealing process. J Aust Ceram Soc 53:193–206. https://doi.org/10.1007/s41779-017-0025-y

    Article  CAS  Google Scholar 

  43. Mathpal MC, Kumar P, Kumar SAKT, Manish Kumar SJP, Aeropa A (2015) Opacity and plasmonic properties of Ag embedded glass based metamaterials. R Soc Chem 5:12555–12562. https://doi.org/10.1039/c4ra14061c

    Article  CAS  Google Scholar 

  44. Zainelabdin SZA, Nur GAO, Willander M (2011) Effect of the polymer emission on the electroluminescence characteristics of n-ZnO nanorods/p-polymer hybrid light emitting diode. Appl Phys A Mater Sci Process 104:1203–1209. https://doi.org/10.1007/s00339-011-6411-3

    Article  CAS  Google Scholar 

  45. You J, Zhao C, Jinfeng Cao JZ, Zhang L (2014) Fabrication of high-density silver nanoparticles on the surface of alginate microspheres for application in catalytic reaction. R Soc Chem. https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  46. Bespalov VG, Boginskaya IA, Bykov IV et al (2010) Using the metal-polymer nanocomposite polyparaxylylene-Ag as a medium with assigned optical characteristics. J Opt Technol 77:726. https://doi.org/10.1364/JOT.77.000726

    Article  CAS  Google Scholar 

  47. Aslan K, Lakowicz JR, Geddes CD (2004) Tunable plasmonic glucose sensing based on the dissociation of Con A-aggregated dextran-coated gold colloids. Anal Chim Acta 517:139–144. https://doi.org/10.1016/j.aca.2004.04.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chiu RYT, Nguyen PT, Wang J, Jue E et al (2014) Dextran-coated gold nanoprobes for the concentration and detection of protein biomarkers. Ann Biomed Eng 42:1–11. https://doi.org/10.1007/s10439-014-1043-3

    Article  Google Scholar 

  49. Park J, Atobe M, Fuchigami T (2005) Sonochemical synthesis of conducting polymer–metal nanoparticles nanocomposite. Electrochim Acta 51:849–854. https://doi.org/10.1016/j.electacta.2005.04.052

    Article  CAS  Google Scholar 

  50. Al-deyab SS (2014) Antimicrobial activity of silver/starch/polyacrylamide nanocomposite. Int J Biol Macromol 68:33–38. https://doi.org/10.1016/j.ijbiomac.2014.04.025

    Article  CAS  PubMed  Google Scholar 

  51. Bashir S, Moosvi SK, Jan T et al (2020) Development of polythiophene/prussian red nanocomposite with dielectric, photocatalytic and metal scavenging properties. J Electron Mater 66:1–10

    Google Scholar 

  52. Abdel-Halim ES, Al-Deyab SS (2014) Electrically conducting silver/guar gum/poly (acrylic acid) nanocomposite. Int J Biol Macromol 69:1–44. https://doi.org/10.1016/j.ijbiomac.2014.06.002

    Article  CAS  Google Scholar 

  53. Mukherjee M, Datta A, Chakravorty D (1994) Electrical resistivity of nanocrystalline PbS grown in a polymer matrix. Appl Phys Lett 64:1159–1161. https://doi.org/10.1063/1.110838

    Article  CAS  Google Scholar 

  54. Chen TK, Tien YI, Wei KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41:1345–1353. https://doi.org/10.1016/S0032-3861(99)00280-3

    Article  CAS  Google Scholar 

  55. Ramos J, Millán A, Palacio F (2000) Production of magnetic nanoparticles in a polyvinylpyridine matrix. Polymer 41:8461–8464. https://doi.org/10.1016/S0032-3861(00)00272-X

    Article  CAS  Google Scholar 

  56. Gómez-Romero P, Sanchez C (2005) Hybrid materials, functional applications. An introduction. In: Functional hybrid materials. Wiley, Weinheim, pp 1–14

  57. Kickelbick G (2006) Hybrid materials. Wiley

    Book  Google Scholar 

  58. Haldorai Y, Shim JJ (2014) Fabrication of metal oxide–polymer hybrid nanocomposites. Adv Polym Sci 267:249–282. https://doi.org/10.1007/12_2014_285

    Article  CAS  Google Scholar 

  59. Prasad AJK, Yeshvantha HS, Chandrakant Ashok T et al (2018) Studies on the wear characteristics of ultra high molecular weight polyethylene (UHMWPE) polymer nanocomposites containing nano zinc oxide. Mater Today Proc 5:2619–2626. https://doi.org/10.1016/j.matpr.2018.01.041

    Article  CAS  Google Scholar 

  60. Faupel F, Zaporojtchenko V, Strunskus T, Elbahri M (2010) Metal-polymer nanocomposites for functional applications. Adv Eng Mater 12:1177–1190. https://doi.org/10.1002/adem.201000231

    Article  CAS  Google Scholar 

  61. Al-Nasassrah MA, Podczeck F, Newton JM (1998) The effect of an increase in chain length on the mechanical properties of polyethylene glycols. Eur J Pharm Biopharm 46:31–38. https://doi.org/10.1016/S0939-6411(97)00151-3

    Article  CAS  PubMed  Google Scholar 

  62. Kumar A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  Google Scholar 

  63. Hyuk W, Suslick KS, Stucky GD, Suh Y (2009) Nanotechnology, nanotoxicology, and neuroscience. Biomaterials 87:133–170. https://doi.org/10.1016/j.pneurobio.2008.09.009

    Article  CAS  Google Scholar 

  64. Kellar KE, Fujii DK, Gunther WHH et al (2000) NC100150 injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging 11:488–494. https://doi.org/10.1002/(SICI)1522-2586(200005)11:5%3c488::AID-JMRI4%3e3.0.CO;2-V

    Article  CAS  PubMed  Google Scholar 

  65. Jeong Y-I, Nah J, Na H-K et al (1999) Self-assembling nanospheres of hydrophobized pullulans in water. Drug Dev Ind Pharm 25:917–927. https://doi.org/10.1081/DDC-100102252

    Article  CAS  PubMed  Google Scholar 

  66. Hao BR, Xing R, Xu Z et al (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742. https://doi.org/10.1002/adma.201000260

    Article  CAS  PubMed  Google Scholar 

  67. Massia SP, Stark J, Letbetter DS (2000) Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials 21:2253–2261. https://doi.org/10.1016/S0142-9612(00)00151-4

    Article  CAS  PubMed  Google Scholar 

  68. Zhao X, Milton Harris J (1998) Novel degradable poly(ethylene glycol) hydrogels for controlled release of protein. J Pharm Sci 87:1450–1458. https://doi.org/10.1021/js980065o

    Article  CAS  PubMed  Google Scholar 

  69. Petchthanasombat C, Tiensing T, Sunintaboon P (2012) Synthesis of zinc oxide-encapsulated poly(methyl methacrylate)-chitosan core-shell hybrid particles and their electrochemical property. J Colloid Interface Sci 369:52–57. https://doi.org/10.1016/j.jcis.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  70. Boudour S, Bouchama I, Hadjab M, Laidoudi S (2019) Optimization of defected ZnO/Si/Cu2O heterostructure solar cell. Opt Mater. https://doi.org/10.1016/j.optmat.2019.109433

    Article  Google Scholar 

  71. Mou J, Zhang W, Fan J et al (2011) Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells. J Alloy Compd 509:961–965. https://doi.org/10.1016/j.jallcom.2010.09.148

    Article  CAS  Google Scholar 

  72. Yadav R, Chundawat TS, Rawat P et al (2021) Photocatalytic degradation of malachite green dye by ZnO and ZnO–β-cyclodextrin nanocomposite. Bull Mater Sci 44:250. https://doi.org/10.1007/s12034-021-02533-z

    Article  CAS  Google Scholar 

  73. Ferrone E, Araneo R, Notargiacomo A et al (2019) ZnO nanostructures and electrospun ZnO–polymeric hybrid nanomaterials in biomedical, health, and sustainability applications. Nanomaterials 9:1–33. https://doi.org/10.3390/nano9101449

    Article  CAS  Google Scholar 

  74. Gong X, Tang CY, Pan L et al (2014) Characterization of poly(vinyl alcohol) (PVA)/ZnO nanocomposites prepared by a one-pot method. Compos B Eng 60:144–149. https://doi.org/10.1016/j.compositesb.2013.12.045

    Article  CAS  Google Scholar 

  75. Kannan K, Radhika D, Reddy KR, Raghu AV (2021) Gd3+ and Y3+ co-doped mixed metal oxide nanohybrids for photocatalytic and antibacterial applications. Nano Express 2:1–13

    Google Scholar 

  76. Shukla SK, Deshpande SR, Shukla SK, Tiwari A (2012) Talanta Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly ( vinyl alcohol ) core-shell nanocomposite. Talanta 99:283–287. https://doi.org/10.1016/j.talanta.2012.05.052

    Article  CAS  PubMed  Google Scholar 

  77. Kandulna R, Choudhary RB (2017) Robust electron transport properties of PANI/PPY/ZnO polymeric nanocomposites for OLED applications. Optik 144:40–48. https://doi.org/10.1016/j.ijleo.2017.06.094

    Article  CAS  Google Scholar 

  78. Bharathi D, Ranjithkumar R, Chandarshekar B, Bhuvaneshwari V (2019) Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: as a bionanocomposite. Int J Biol Macromol 129:989–996. https://doi.org/10.1016/j.ijbiomac.2019.02.061

    Article  CAS  PubMed  Google Scholar 

  79. Botsi S, Tsamis C, Chatzichristidi M, Papageorgiou G (2019) Nano-structures & nano-objects facile and cost-efficient development of PMMA-based nanocomposites with custom-made hydrothermally-synthesized ZnO nanofillers. Nano-Struct Nano-Obj 17:7–20. https://doi.org/10.1016/j.nanoso.2018.10.003

    Article  CAS  Google Scholar 

  80. Skoda D, Urbanek P, Sevcik J et al (2018) Microwave-assisted synthesis of colloidal ZnO nanocrystals and their utilization in improving polymer light emitting diodes efficiency. Mater Sci Eng B Solid-State Mater Adv Technol 232–235:22–32. https://doi.org/10.1016/j.mseb.2018.10.013

    Article  CAS  Google Scholar 

  81. Akermi M, Jaballah N, Alarifi IM et al (2019) Synthesis and characterization of a novel hydride polymer P-DSBT/ZnO nano-composite for optoelectronic applications. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.110963

    Article  Google Scholar 

  82. Alamdari S, Sasani M, Afarideh H, Mohammadi A (2019) Preparation and characterization of GO-ZnO nanocomposite for UV detection application. Opt Mater 92:243–250. https://doi.org/10.1016/j.optmat.2019.04.041

    Article  CAS  Google Scholar 

  83. Mohanapriya MK, Deshmukh K, Sadasivuni KK et al (2019) Enhanced quality factor of polyvinyl formal (PVF) based nanocomposites filled with zinc oxide and carbon black nanoparticles for wirelessw sensing applications. Mater Today Proc 9:199–216. https://doi.org/10.1016/j.matpr.2019.02.153

    Article  CAS  Google Scholar 

  84. Makhado E, Pandey S, Modibane KD et al (2020) Sequestration of methylene blue dye using sodium alginate poly(acrylic acid)@ZnO hydrogel nanocomposite: kinetic, isotherm, and thermodynamic investigations. Int J Biol Macromol 162:60–73. https://doi.org/10.1016/j.ijbiomac.2020.06.143

    Article  CAS  PubMed  Google Scholar 

  85. Wahid F, Duan Y, Hu X et al (2019) A facile construction of bacterial cellulose/ZnO nanocomposite fi lms and their photocatalytic and antibacterial properties. Int J Biol Macromol 132:692–700. https://doi.org/10.1016/j.ijbiomac.2019.03.240

    Article  CAS  PubMed  Google Scholar 

  86. Choudhary S (2017) Dielectric dispersion and relaxations in (PVA-PEO)-ZnO polymer nanocomposites. Phys B 522:48–56. https://doi.org/10.1016/j.physb.2017.07.066

    Article  CAS  Google Scholar 

  87. Wagener P, Faramarzi S, Schwenke A et al (2011) Photoluminescent zinc oxide polymer nanocomposites fabricated using picosecond laser ablation in an organic solvent. Appl Surf Sci 257:7231–7237. https://doi.org/10.1016/j.apsusc.2011.03.097

    Article  CAS  Google Scholar 

  88. Karthikeyan KR, Arul KT, Ramya JR et al (2019) Core/shell structures on argon ions implanted polymer based zinc ions incorporated HAp nanocomposite coatings. Mater Sci Semicond Process 104:104687. https://doi.org/10.1016/j.mssp.2019.104687

    Article  CAS  Google Scholar 

  89. Zhang R, Wang Y, Ma D et al (2019) Effects of ultrasonication duration and graphene oxide and nano-zinc oxide contents on the properties of polyvinyl alcohol nanocomposites. Ultrason Sonochem 59:104731. https://doi.org/10.1016/j.ultsonch.2019.104731

    Article  CAS  PubMed  Google Scholar 

  90. Azizi-Lalabadi M, Ehsani A, Ghanbarzadeh B, Divband B (2020) Polyvinyl alcohol/gelatin nanocomposite containing ZnO, TiO2 or ZnO/TiO2 nanoparticles doped on 4A zeolite: microbial and sensory qualities of packaged white shrimp during refrigeration. Int J Food Microbiol 312:108375. https://doi.org/10.1016/j.ijfoodmicro.2019.108375

    Article  CAS  PubMed  Google Scholar 

  91. Alamdari S, Ghamsari MS, Tafreshi MJ (2020) Progress in nuclear energy novel scintillation properties by entrapping ZnO:Ga nanocrystals in epoxy polymer. Prog Nucl Energy 130:103495. https://doi.org/10.1016/j.pnucene.2020.103495

    Article  CAS  Google Scholar 

  92. Mustaqeem M, Saleh TA, ur Rehman et al (2020) Synthesis of Zn0.8Co0.1Ni0.1Fe2O4 polyvinyl alcohol nanocomposites via ultrasound-assisted emulsion liquid phase. Arab J Chem 13:3246–3254. https://doi.org/10.1016/j.arabjc.2018.10.009

    Article  CAS  Google Scholar 

  93. Rajeh A, Ragab HM, Abutalib MM (2020) Co doped ZnO reinforced PEMA/PMMA composite: structural, thermal, dielectric and electrical properties for electrochemical applications. J Mol Struct 1217:128447. https://doi.org/10.1016/j.molstruc.2020.128447

    Article  CAS  Google Scholar 

  94. Darbasizadeh B, Fatahi Y, Feyzi-barnaji B et al (2019) Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): fabrication, characterization and in-vitro release and anti-bacterial properties. Int J Biol Macromol 141:1137–1146. https://doi.org/10.1016/j.ijbiomac.2019.09.060

    Article  CAS  PubMed  Google Scholar 

  95. Alavi M, Nokhodchi A (2020) An overview on antimicrobial and wound healing properties of ZnO nanobio fi lms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohyd Polym 227:115349. https://doi.org/10.1016/j.carbpol.2019.115349

    Article  CAS  Google Scholar 

  96. Nandimath M, Sc M, Bhajantri RF, Ph D (2020) Dominant role of pyronin B on structural, optical and fluorescence properties of chemically synthesized ZnO loaded PVA polymer nanocomposites. Opt Mater 105:109892. https://doi.org/10.1016/j.optmat.2020.109892

    Article  CAS  Google Scholar 

  97. Arularasu MV, Harb M, Vignesh R et al (2020) 7PVDF/ZnO hybrid nanocomposite applied as a resistive humidity sensor. Surf Interfaces. https://doi.org/10.1016/j.surfin.2020.100780

    Article  Google Scholar 

  98. Al-tayyar NA, Youssef AM, Al-hindi RR (2020) Antimicrobial packaging e ffi ciency of ZnO–SiO2 nanocomposites infused into PVA/CS fi lm for enhancing the shelf life of food products. Food Packag Shelf Life 25:100523. https://doi.org/10.1016/j.fpsl.2020.100523

    Article  Google Scholar 

  99. Praveen E, Peter IJ, Muthu A et al (2019) Performance of ZnO/ZnS nanocomposite based dye-sensitized solar cell with chitosan-polymer electrolyte. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.05.382

    Article  Google Scholar 

  100. Murthy A, Narasimha K, Mohana S, Bhaskar M (2020) Development of Al2O3·ZnO/GO-phenolic formaldehyde amine derivative nanocomposite: a new hybrid anticorrosion coating material for mild steel. Colloids Surf A 601:1250–36. https://doi.org/10.1016/j.colsurfa.2020.125036

    Article  CAS  Google Scholar 

  101. Kumar AM, Khan A, Yusuf M et al (2020) Hierarchical graphitic carbon nitride-ZnO nanocomposite: viable reinforcement for the improved corrosion resistant behavior of organic coatings. Mater Chem Phys 251:122987. https://doi.org/10.1016/j.matchemphys.2020.122987

    Article  CAS  Google Scholar 

  102. Abutalib MM, Rajeh A (2020) Structural, thermal, optical and conductivity studies of Co/ZnO nanoparticles doped CMC polymer for solid state battery applications. Polym Testing 91:106803. https://doi.org/10.1016/j.polymertesting.2020.106803

    Article  CAS  Google Scholar 

  103. Kamburova K, Boshkova N, Boshkov N, Radeva T (2021) Colloids and surfaces a: physicochemical and engineering aspects composite coatings with polymeric modified ZnO nanoparticles and nanocontainers with inhibitor for corrosion protection of low carbon steel. Colloids Surf A 609:125741. https://doi.org/10.1016/j.colsurfa.2020.125741

    Article  CAS  Google Scholar 

  104. Tabhane GH, Giripunje SM (2020) Robust flower-like ZnO assembled β-PVDF/BT hybrid nanocomposite: excellent energy harvester. Polym Test 88:106564. https://doi.org/10.1016/j.polymertesting.2020.106564

    Article  CAS  Google Scholar 

  105. Wen F, Zhu C, Li L et al (2022) Enhanced energy storage performance of polymer nanocomposites using hybrid 2D ZnO@MoS2 semiconductive nano-fillers. Chem Eng J 430:132676. https://doi.org/10.1016/j.cej.2021.132676

    Article  CAS  Google Scholar 

  106. Xu Y, Li J, Li W (2022) Evolution in electrochemical performance of the solid blend polymer electrolyte (PEO/PVDF) with the content of ZnO nanofiller. Colloids Surf A 632:127773. https://doi.org/10.1016/j.colsurfa.2021.127773

    Article  CAS  Google Scholar 

  107. Padmalaya G, Vardhan KH, Kumar PS et al (2022) A disposable modified screen-printed electrode using egg white/ZnO rice structured composite as practical tool electrochemical sensor for formaldehyde detection and its comparative electrochemical study with Chitosan/ZnO nanocomposite. Chemosphere 288:132560. https://doi.org/10.1016/j.chemosphere.2021.132560

    Article  CAS  PubMed  Google Scholar 

  108. Gasti T, Dixit S, Hiremani VD et al (2022) Chitosan/pullulan based films incorporated with clove essential oil loaded chitosan-ZnO hybrid nanoparticles for active food packaging. Carbohyd Polym 277:118866. https://doi.org/10.1016/j.carbpol.2021.118866

    Article  CAS  Google Scholar 

  109. Banu JR, Sharmila VG, Kannah RY et al (2022) Impact of novel deflocculant ZnO/Chitosan nanocomposite film in disperser pretreatment enhancing energy efficient anaerobic digestion: parameter assessment and cost exploration. Chemosphere 286:131835. https://doi.org/10.1016/j.chemosphere.2021.131835

    Article  CAS  Google Scholar 

  110. Naik SS, Lee SJ, Yeon S et al (2021) Pulsed laser-assisted synthesis of metal and nonmetal-codoped ZnO for efficient photocatalytic degradation of Rhodamine B under solar light irradiation. Chemosphere 274:129782. https://doi.org/10.1016/j.chemosphere.2021.129782

    Article  CAS  PubMed  Google Scholar 

  111. Mourya VK, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mater Lett 1:11–33. https://doi.org/10.5185/amlett.2010.3108

    Article  CAS  Google Scholar 

  112. Trombotto S, Ladavière C, Delolme F, Domard A (2008) Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers. Biomacromol 9:1731–1738. https://doi.org/10.1021/bm800157x

    Article  CAS  Google Scholar 

  113. Tsai YC, Chen SY, Liaw HW (2007) Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sens Actuators B Chem 125:474–481. https://doi.org/10.1016/j.snb.2007.02.052

    Article  CAS  Google Scholar 

  114. Sorlier P, Viton C, Domard A (2002) Relation between solution properties and degree of acetylation of chitosan: role of aging. Biomacromol 3:1336–1342. https://doi.org/10.1021/bm0256146

    Article  CAS  Google Scholar 

  115. Lizardi-Mendoza J, Argüelles Monal WM, Goycoolea Valencia FM (2016) Chemical characteristics and functional properties of chitosan. Elsevier

  116. Liu H, Wang C, Li C et al (2018) A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 8:7533–7549. https://doi.org/10.1039/c7ra13510f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Paradossi G, Cavalieri F, Chiessi E et al (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications. J Mater Sci Mater Med 14:687–691. https://doi.org/10.1023/A:1024907615244

    Article  CAS  PubMed  Google Scholar 

  118. Coronado R, Pekerar S, Lorenzo AT, Sabino MA (2011) Characterization of thermo-sensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid. Polym Bull 67:101–124. https://doi.org/10.1007/s00289-010-0407-6

    Article  CAS  Google Scholar 

  119. Brayner R, Ferrari-Iliou R, Brivois N et al (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. https://doi.org/10.1021/nl052326h

    Article  CAS  PubMed  Google Scholar 

  120. Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27:1346–1354. https://doi.org/10.1002/marc.200600297

    Article  CAS  Google Scholar 

  121. Mansour AF, Mansour SF, Abdo MA (2015) Improvement structural and optical properties of ZnO/PVA nanocomposites. IOSR J Appl Phys 7:60–69. https://doi.org/10.9790/4861-07226069

    Article  Google Scholar 

  122. Sheik S, Jagadish GKN (2017) Development and characterization study of silk fibre reinforced poly(vinyl alcohol) composites. Int J Plast Technol 321:108–122. https://doi.org/10.1007/s12588-017-9174-7

    Article  CAS  Google Scholar 

  123. Itoh H, Li Y, Chan KHK, Kotaki M (2016) Morphology and mechanical properties of PVA nanofibers spun by free surface electrospinning. Polym Bull 73:2761–2777. https://doi.org/10.1007/s00289-016-1620-8

    Article  CAS  Google Scholar 

  124. Wang B, Chen Z, Zhang J et al (2014) Fabrication of PVA/graphene oxide/TiO2 composite nanofibers through electrospinning and interface sol-gel reaction: effect of graphene oxide on PVA nanofibers and growth of TiO2. Colloids Surf A 457:318–325. https://doi.org/10.1016/j.colsurfa.2014.06.006

    Article  CAS  Google Scholar 

  125. Yang JM, Fan CS, Wang NC, Chang YH (2018) Evaluation of membrane preparation method on the performance of alkaline polymer electrolyte: comparison between poly(vinyl alcohol)/chitosan blended membrane and poly(vinyl alcohol)/chitosan electrospun nanofiber composite membranes. Electrochim Acta 266:332–340. https://doi.org/10.1016/j.electacta.2018.02.043

    Article  CAS  Google Scholar 

  126. Singh V, Mishra AK (2015) White light emission from vegetable extracts. Nature. https://doi.org/10.1038/srep11118

    Article  PubMed  PubMed Central  Google Scholar 

  127. Selvi RT, Prasanna APS, Niranjan R et al (2018) Metal oxide curcumin incorporated polymer patches for wound healing. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.01.143

    Article  Google Scholar 

  128. Jaiturong P, Sirithunyalug B, Eitsayeam S et al (2018) Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier. Asian J Pharm Sci 13:239–247. https://doi.org/10.1016/j.ajps.2017.08.008

    Article  PubMed  Google Scholar 

  129. Sangnim T, Limmatvapirat S, Nunthanid J et al (2018) Design and characterization of clindamycin-loaded nanofiber patches composed of polyvinyl alcohol and tamarind seed gum and fabricated by electrohydrodynamic atomization. Asian J Pharm Sci 13:450–458. https://doi.org/10.1016/j.ajps.2018.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  130. Paaver U, Laidmäe I, Santos HA et al (2016) Development of a novel electrospun nanofibrous delivery system for poorly water-soluble β-sitosterol. Asian J Pharm Sci 11:500–506. https://doi.org/10.1016/j.ajps.2016.04.005

    Article  Google Scholar 

  131. Karczewski A, Feitosa SA, Hamer EI et al (2018) Clindamycin-modified triple antibiotic nanofibers: a stain-free antimicrobial intracanal drug delivery system. J Endodont 44:155–162. https://doi.org/10.1016/j.joen.2017.08.024

    Article  Google Scholar 

  132. Herrero-Herrero M, Gómez-Tejedor JA, Vallés-Lluch A (2018) PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur Polymer J 99:445–455. https://doi.org/10.1016/j.eurpolymj.2017.12.045

    Article  CAS  Google Scholar 

  133. Tamizi E, Azizi M, Seyed Dorraji MS et al (2018) Stabilized core/shell PVA/SA nanofibers as an efficient drug delivery system for dexpanthenol. Polym Bull 75:547–560. https://doi.org/10.1007/s00289-017-2049-4

    Article  CAS  Google Scholar 

  134. Hossieni-Aghdam SJ, Foroughi-Nia B, Zare-Akbari Z et al (2018) Facile fabrication and characterization of a novel oral pH-sensitive drug delivery system based on CMC hydrogel and HNT-AT nanohybrid. Int J Biol Macromol 107:2436–2449. https://doi.org/10.1016/j.ijbiomac.2017.10.128

    Article  CAS  PubMed  Google Scholar 

  135. Farhadnejad H, Mortazavi SA, Erfan M et al (2018) Facile preparation and characterization of pH sensitive Mt/CMC nanocomposite hydrogel beads for propranolol controlled release. Int J Biol Macromol 111:696–705. https://doi.org/10.1016/j.ijbiomac.2018.01.061

    Article  CAS  PubMed  Google Scholar 

  136. Buşilə M, Muşat V, Textor T, Mahltig B (2015) Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/chitosan biocomposites. RSC Adv 5:21562–21571. https://doi.org/10.1039/c4ra13918f

    Article  Google Scholar 

  137. Viorica GP, Musat V, Pimentel A et al (2019) Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin films. J Alloys Compd 803:922–933. https://doi.org/10.1016/j.jallcom.2019.06.373

    Article  CAS  Google Scholar 

  138. Jalal DS, Manji TS (2014) Preparation and optimization of poly(vinyl formal) from poly(vinyl acetate) for electrical insulation. Int J Eng Trends Technol 13:266–270. https://doi.org/10.14445/22315381/ijett-v13p254

    Article  Google Scholar 

  139. Tsuji T, Iryo K, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202:80–85. https://doi.org/10.1016/S0169-4332(02)00936-4

    Article  CAS  Google Scholar 

  140. Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821. https://doi.org/10.1039/b900654k

    Article  CAS  PubMed  Google Scholar 

  141. Barcikowski S, Devesa F, Moldenhauer K (2009) Impact and structure of literature on nanoparticle generation by laser ablation in liquids. J Nanopart Res 11:1883–1893. https://doi.org/10.1007/s11051-009-9765-0

    Article  Google Scholar 

  142. Gong P, Zhang L, Yuan X et al (2019) Multifunctional fluorescent PEGylated fluorinated graphene for targeted drug delivery: an experiment and DFT study. Dyes Pigm 162:573–582. https://doi.org/10.1016/j.dyepig.2018.10.031

    Article  CAS  Google Scholar 

  143. Robinson JT, Tabakman SM, Liang Y et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133:6825–6831

    Article  CAS  PubMed  Google Scholar 

  144. Zhang M, Chen Z, Tan Z et al (2019) Effects of stability margin and thrust specific fuel consumption constrains on multi-disciplinary optimization for blended-wing-body design. Chin J Aeronaut. https://doi.org/10.1016/j.cja.2019.05.018

    Article  Google Scholar 

  145. Zhang M, Wu F, Wang W et al (2018) Multifunctional nanocomposites for targeted, photothermal, and chemotherapy. Chem Mater. https://doi.org/10.1021/acs.chemmater.8b00934

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhang M, Wang W, Zhou N et al (2017) Near-infrared light triggered photo-therapy, in combination with chemotherapy using magnetofluorescent carbon quantum dots for effective cancer treating. Carbon 118:32. https://doi.org/10.1016/j.carbon.2017.03.085

    Article  CAS  Google Scholar 

  147. Liang Y, Zhao X, Hu T et al (2019) Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Nano micro small 1900046:1–17. https://doi.org/10.1002/smll.201900046

    Article  CAS  Google Scholar 

  148. Liang Y, Wang M, Zhang Z et al (2019) Facile synthesis of ZnO QDs@GO-CS hydrogel for synergetic antibacterial applications and enhanced wound healing. Chem Eng J 378:122043. https://doi.org/10.1016/j.cej.2019.122043

    Article  CAS  Google Scholar 

  149. Berthier C, Gorecki W, Minier M et al (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 11:91–95. https://doi.org/10.1016/0167-2738(83)90068-1

    Article  CAS  Google Scholar 

  150. Hill AJ, Hannink RHJ (2006) Nanostructure control of materials

  151. Rebaoui Z, Bachir Bouiajra W, Abboun Abid M et al (2017) SiC polytypes and doping nature effects on electrical properties of ZnO–SiC Schottky diodes. Microelectron Eng 171:11–19. https://doi.org/10.1016/j.mee.2017.01.010

    Article  CAS  Google Scholar 

  152. Orak I, Kocyigit A, Alindal S (2017) Electrical and dielectric characterization of Au/ZnO/n-Si device depending frequency and voltage. Chin Phys B. https://doi.org/10.1088/1674-1056/26/2/028102

    Article  Google Scholar 

  153. Bilkan BY, Fotouhi-Shablou S et al (2017) On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2–PVA/n-Si Schottky barrier diodes. Appl Phys A Mater Sci Process. https://doi.org/10.1007/s00339-017-1168-y

    Article  Google Scholar 

  154. Azizian-Kalandaragh Y, Khodayari A, Behboudnia M (2009) Ultrasound-assisted synthesis of ZnO semiconductor nanostructures. Mater Sci Semicond Process 12:142–145. https://doi.org/10.1016/j.mssp.2009.09.006

    Article  CAS  Google Scholar 

  155. Wong EM, Searson PC (1999) ZnO quantum particle thin films fabricated by electrophoretic deposition. Appl Phys Lett 74:2939–2941. https://doi.org/10.1063/1.123972

    Article  CAS  Google Scholar 

  156. Wang QP, Zhang DH, Xue ZY, Hao XT (2002) Violet luminescence emitted from ZnO films deposited on Si substrate by rf magnetron sputtering. Appl Surf Sci 201:123–128. https://doi.org/10.1016/S0169-4332(02)00570-6

    Article  CAS  Google Scholar 

  157. Wu JJ, Liu SC (2002) Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater 14:215–218. https://doi.org/10.1002/1521-4095(20020205)14:3%3c215::AID-ADMA215%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  158. Shan FK, Liu GX, Lee WJ et al (2005) Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition. Appl Phys Lett 86:1–3. https://doi.org/10.1063/1.1939078

    Article  CAS  Google Scholar 

  159. Lin B, Fu Z, Jia Y (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79:943–945. https://doi.org/10.1063/1.1394173

    Article  CAS  Google Scholar 

  160. Ong HC, Du GT (2004) The evolution of defect emissions in oxygen-deficient and -surplus ZnO thin films: the implication of different growth modes. J Cryst Growth 265:471–475. https://doi.org/10.1016/j.jcrysgro.2004.02.010

    Article  CAS  Google Scholar 

  161. Gilbert B, Ono RK, Ching KA, Kim CS (2009) The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J Colloid Interface Sci 339:285–295. https://doi.org/10.1016/j.jcis.2009.07.058

    Article  CAS  PubMed  Google Scholar 

  162. Lin CH, Tseng SC, Liu YK et al (2008) Suppressing series resistance in organic solar cells by oxygen plasma treatment. Appl Phys Lett 92:14–17. https://doi.org/10.1063/1.2940236

    Article  CAS  Google Scholar 

  163. Chen YM, Lin CF, Lee JH, Huang JJ (2008) Quasi-static capacitance-voltage characterizations of carrier accumulation and depletion phenomena in pentacene thin film transistors. Solid-State Electron 52:269–274. https://doi.org/10.1016/j.sse.2007.08.020

    Article  CAS  Google Scholar 

  164. Fu YS, Du XW, Kulinich SA et al (2007) Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route. J Am Chem Soc 129:16029–16033. https://doi.org/10.1021/ja075604i

    Article  CAS  PubMed  Google Scholar 

  165. Jan T, Rizvi MA, Moosvi SK et al (2021) A switching-type positive temperature coefficient behavior exhibited by PPy (PhSe)2 nanocomposite prepared by chemical oxidative polymerization. ACS Omega 6:7413–7421. https://doi.org/10.1021/acsomega.0c05799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Demir MM, Wegner G (2012) Challenges in the preparation of optical polymer composites with nanosized pigment particles: a review on recent efforts. Macromol Mater Eng 297:838–863. https://doi.org/10.1002/mame.201200089

    Article  CAS  Google Scholar 

  167. Raj Pant H, Pant B, Joo Kim H et al (2013) A green and facile one-pot synthesis of Ag-ZnO/RGO nanocomposite with effective photocatalytic activity for removal of organic pollutants. Ceram Int 39:5083–5091. https://doi.org/10.1016/j.ceramint.2012.12.003

    Article  CAS  Google Scholar 

  168. Xiong HM, Zhao X, Chen JS (2001) New polymer-inorganic nanocomposites: PEO-ZnO and PEO-ZnO-LiClO4 films. J Phys Chem B 105:10169–10174. https://doi.org/10.1021/jp0103169

    Article  CAS  Google Scholar 

  169. Ji Z, Wu J, Shen X et al (2011) Preparation and characterization of graphene/NiO nanocomposites. J Mater Sci 46:1190–1195. https://doi.org/10.1007/s10853-010-4892-7

    Article  CAS  Google Scholar 

  170. Mallakpour S, Behranvand V (2014) Optical, mechanical, and thermal behavior of poly(vinyl alcohol) composite films embedded with biosafe and optically active poly(amide–imide)-ZnO quantum dot nanocomposite as a novel reinforcement. Colloid Polym Sci 292:2857–2867. https://doi.org/10.1007/s00396-014-3327-4

    Article  CAS  Google Scholar 

  171. Du H, Zhang J (2012) The synthesis of poly(vinyl cinnamates) with light-induced shape fixity properties. Sens Actuators A 179:114–120. https://doi.org/10.1016/j.sna.2012.02.001

    Article  CAS  Google Scholar 

  172. Weon JI, Creasy TS, Sue HJ, Hsieh AJ (2005) Mechanical behavior of polymethylmethacrylate with molecules oriented via simple shear. Polym Eng Sci 45:314–324. https://doi.org/10.1002/pen.20269

    Article  CAS  Google Scholar 

  173. Sreeja R, John J, Aneesh PM, Jayaraj MK (2010) Linear and nonlinear optical properties of luminescent ZnO nanoparticles embedded in PMMA matrix. Optics Communications 283:2908–2913. https://doi.org/10.1016/j.optcom.2010.02.044

    Article  CAS  Google Scholar 

  174. Kulyk B, Sahraoui B, Krupka O et al (2009) Linear and nonlinear optical properties of ZnO/PMMA nanocomposite films. J Appl Phys. https://doi.org/10.1063/1.3253745

    Article  Google Scholar 

  175. Agrawal M, Gupta S, Zafeiropoulos NE et al (2010) Nano-level mixing of ZnO into poly(methyl methacrylate). Macromol Chem Phys 211:1925–1932. https://doi.org/10.1002/macp.201000191

    Article  CAS  Google Scholar 

  176. Hu X, Gong J, Zhang L, Yu JC (2008) Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing. Adv Mater 20:4845–4850. https://doi.org/10.1002/adma.200801433

    Article  CAS  Google Scholar 

  177. Carter SA, Scott JC, Brock PJ (1997) Enhanced luminance in polymer composite light emitting devices. Appl Phys Lett 71:1145–1147. https://doi.org/10.1063/1.119848

    Article  CAS  Google Scholar 

  178. Hewidy D, Gadallah AS, Fattah GA (2017) Hybrid electroluminescent device based on MEH-PPV and ZnO. Physica B 507:46–50. https://doi.org/10.1016/j.physb.2016.11.034

    Article  CAS  Google Scholar 

  179. Petrella A, Curri ML, Striccoli M et al (2015) Photoelectrochemical properties of ZnO nanocrystals/MEH-PPV composite: the effects of nanocrystals synthetic route, film deposition and electrolyte composition. Thin Solid Films 595:157–163. https://doi.org/10.1016/j.tsf.2015.10.077

    Article  CAS  Google Scholar 

  180. Toušková J, Toušek J, Rohovec J et al (2014) Photovoltage method for the research of CdS and ZnO nanoparticles and hybrid MEH-PPV/nanoparticle structures. J Nanopart Res. https://doi.org/10.1007/s11051-014-2314-5

    Article  Google Scholar 

  181. Middya S, Layek A, Dey A, Ray PP (2013) Morphological impact of ZnO nanoparticle on MEHPPV:ZnO based hybrid solar cell. J Mater Sci Mater Electron 24:4621–4629. https://doi.org/10.1007/s10854-013-1453-2

    Article  CAS  Google Scholar 

  182. Husain S, Rydzek G, Hasan PMZ et al (2021) Free standing porous composite films and membranes obtained through substrate-guided assembly. Mater Lett 288:129317. https://doi.org/10.1016/j.matlet.2021.129317

    Article  CAS  Google Scholar 

  183. Zhang Y, Liu Y, Wu L et al (2009) Photoluminescence and ZnO → Eu3+ energy transfer in Eu3+-doped ZnO nanospheres. J Phys D Appl Phys. https://doi.org/10.1088/0022-3727/42/8/085106

    Article  Google Scholar 

  184. Farag AAM, Osiris WG, El-shazly EAA (2011) Structural and optical characterizations of pyronine B thin films and its photovoltaic applications. J Alloys Compd 509:6467–6475. https://doi.org/10.1016/j.jallcom.2011.03.096

    Article  CAS  Google Scholar 

  185. Piramidowicz R, Jusza A, Lipi L (2019) RE3+: LaALO3 doped luminescent polymer composites. Opt Mater 87:35–41. https://doi.org/10.1016/j.optmat.2018.06.018

    Article  CAS  Google Scholar 

  186. Çakar M, Temirci C, Türüt A (2004) The Schottky barrier height of the rectifying Cu/pyronine-B/p-Si, Au/pyronine-B/p-Si, Sn/pyronine-B/p-Si and Al/pyronine-B/p-Si contacts. Synth Met 142:177–180. https://doi.org/10.1016/j.synthmet.2003.08.009

    Article  CAS  Google Scholar 

  187. Arık M, Onganer Y (2003) Molecular excitons of Pyronin B and Pyronin Y in colloidal silica suspension. Chem Phys Lett 375:126–133. https://doi.org/10.1016/S0009-2614(03)00848-0

    Article  CAS  Google Scholar 

  188. Cakar M, Yıldırım N, Dogan H, Turut A (2007) The conductance and capacitance—frequency characteristics of Au/pyronine-B/p-type Si/Al contacts. Appl Surface Sci 253:3464–3468. https://doi.org/10.1016/j.apsusc.2006.07.045

    Article  CAS  Google Scholar 

  189. Castro Martínez M, Hernández López S, Santiago EV (2015) Relationship between polymer dielectric constant and percolation threshold in conductive poly(styrene)-type polymer and carbon black composites. J Nanomater. https://doi.org/10.1155/2015/607896

    Article  Google Scholar 

  190. Nan C-W, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annu Rev Mater Res 40:131–151. https://doi.org/10.1146/annurev-matsci-070909-104529

    Article  CAS  Google Scholar 

  191. Vargas-Bernal R, Herrera-Pérez G, Calixto-Olalde ME, Tecpoyotl-Torres M (2013) Analysis of DC electrical conductivity models of carbon nanotube-polymer composites with potential application to nanometric electronic devices. J Electr Comput Eng. https://doi.org/10.1155/2013/179538

    Article  Google Scholar 

  192. Gao T, Tillman ES, Lewis NS (2005) Detection and classification of volatile organic amines and carboxylic acids using arrays of carbon black-dendrimer composite vapor detectors. Chem Mater 17:2904–2911. https://doi.org/10.1021/cm049457o

    Article  CAS  Google Scholar 

  193. Kim YS, Yang YS, Ha SC et al (2005) Miniaturized electronic nose system based on a personal digital assistant. ETRI J 27:585–593. https://doi.org/10.4218/etrij.05.0105.0048

    Article  Google Scholar 

  194. Xie H, Yang Q, Sun X et al (2006) Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration. Sens Actuators B Chem 113:887–891. https://doi.org/10.1016/j.snb.2005.03.116

    Article  CAS  Google Scholar 

  195. Tiwari A, Gong S (2008) Electrochemical study of chitosan-SiO2-MWNT composite electrodes for the fabrication of cholesterol biosensors. Electroanalysis 20:2119–2126. https://doi.org/10.1002/elan.200804296

    Article  CAS  Google Scholar 

  196. Rahimi K, Yazdani A (2018) Improving photocatalytic activity of ZnO nanorods: a comparison between thermal decomposition of zinc acetate under vacuum and in ambient air. Mater Sci Semicond Process 80:38–43. https://doi.org/10.1016/j.mssp.2018.02.018

    Article  CAS  Google Scholar 

  197. Lin J, Luo Z, Liu J, Li P (2018) Materials science in semiconductor processing photocatalytic degradation of methylene blue in aqueous solution by using. Mater Sci Semicond Process 87:24–31. https://doi.org/10.1016/j.mssp.2018.07.003

    Article  CAS  Google Scholar 

  198. Tai H, Duan Z, Wang Y et al (2020) Paper-based sensors for gas, humidity and strain detections: a review. ACS Appl Mater Interfaces 12:31037–31053. https://doi.org/10.1021/acsami.0c06435

    Article  CAS  PubMed  Google Scholar 

  199. Arularasu MV, Sundaram R (2016) Synthesis and characterization of nanocrystalline ZnWO4–ZnO composites and their humidity sensing performance. Sens Bio-sens Res 11:20–25. https://doi.org/10.1016/j.sbsr.2016.08.006

    Article  Google Scholar 

  200. Ma RT, Zhao HT, Zhang G (2010) Preparation, characterization and microwave absorption properties of polyaniline/Co0.5Zn0.5Fe2O4 nanocomposite. Mater Res Bull 45:1064–1068. https://doi.org/10.1016/j.materresbull.2010.06.021

    Article  CAS  Google Scholar 

  201. Dorraji MSS, Rasoulifard MH, Khodabandeloo MH et al (2016) Microwave absorption properties of polyaniline-Fe3O4/ZnO-polyester nanocomposite: preparation and optimization. Appl Surf Sci 366:210–218. https://doi.org/10.1016/j.apsusc.2016.01.102

    Article  CAS  Google Scholar 

  202. Sun L, Zhan L, Shi Y et al (2014) Microemulsion synthesis and electromagnetic wave absorption properties of monodispersed Fe3O 4/polyaniline core–shell nanocomposites. Synth Met 187:102–107. https://doi.org/10.1016/j.synthmet.2013.11.007

    Article  CAS  Google Scholar 

  203. Zhu C, Zhang M, Qiao Y et al (2010) Fe3O4/TiO2 core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J Phys Chem C 114:16229–16235

    Article  CAS  Google Scholar 

  204. Liu J, Cao W, Jin H et al (2015) Microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature†. J Mater Chem C 3:4670–4677. https://doi.org/10.1039/C5TC00426H

    Article  CAS  Google Scholar 

  205. Huang H, Chen X, Zhang J (2016) Weight self-adjustment adams implicit filtering algorithm for attitude estimation applied to underwater gliders. IEEE Access 4:5695–5709. https://doi.org/10.1109/ACCESS.2016.2606408

    Article  Google Scholar 

  206. Viana B, Tiginyanu IM, Ursaki VV, Corte R (2010) Epitaxial electrodeposition of ZnO nanowire arrays on p-GaN for efficient UV-light-emitting diode fabrication. ACS Appl Mater Interfaces 2:2083–2090. https://doi.org/10.1021/am100334c

    Article  CAS  Google Scholar 

  207. McPeak KM, Baxter JB (2009) Microreactor for high-yield chemical bath deposition of semiconductor nanowires: ZnO nanowire case study. Ind Eng Chem Res 48:5954–5961. https://doi.org/10.1021/ie801405d

    Article  CAS  Google Scholar 

  208. Cao B, Cai W (2008) From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J Phys Chem C 112:680–685. https://doi.org/10.1021/jp076870l

    Article  CAS  Google Scholar 

  209. Solís-Pomar F, Martínez E, Meléndrez MF, Pérez-Tijerina E (2011) Growth of vertically aligned ZnO nanorods using textured ZnO films. Nanoscale Res Lett 6:1–11. https://doi.org/10.1186/1556-276X-6-524

    Article  CAS  Google Scholar 

  210. Mai W, Gao P, Lao C et al (2008) Vertically aligned ZnO nanowire arrays on GaN and SiC substrates. Chem Phys Lett 460:253–256. https://doi.org/10.1016/j.cplett.2008.06.017

    Article  CAS  Google Scholar 

  211. Lai E, Kim W, Yang P (2008) Vertical nanowire array-based light emitting diodes. Nano Res 1:123–128. https://doi.org/10.1007/s12274-008-8017-4

    Article  CAS  Google Scholar 

  212. Na JH, Kitamura M, Arita M, Arakawa Y (2009) Hybrid p–n junction light-emitting diodes based on sputtered ZnO and organic semiconductors. Appl Phys Lett 95:19–22. https://doi.org/10.1063/1.3275802

    Article  CAS  Google Scholar 

  213. Hassan JJ, Hassan Z, Abu-Hassan H (2011) High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO-PVA complex seed layer on Si substrates. J Alloys Compd 509:6711–6719. https://doi.org/10.1016/j.jallcom.2011.03.153

    Article  CAS  Google Scholar 

  214. Liu X, Chen X, Ren J et al (2019) Effects of nano-ZnO and nano-SiO 2 particles on properties of PVA/xylan composite films. Int J Biol Macromol 132:978–986. https://doi.org/10.1016/j.ijbiomac.2019.03.088

    Article  CAS  PubMed  Google Scholar 

  215. Chatterjee AK, Sarkar RK, Chattopadhyay AP et al (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:66. https://doi.org/10.1088/0957-4484/23/8/085103

    Article  CAS  Google Scholar 

  216. Ashraf S, Blackman CS, Palgrave RG, Parkin IP (2007) Aerosol-assisted chemical vapour deposition of WO3 thin films using polyoxometallate precursors and their gas sensing properties. J Mater Chem 17:1063–1070. https://doi.org/10.1039/b617982g

    Article  CAS  Google Scholar 

  217. Rithin Kumar NB, Crasta V, Bhajantri RF, Praveen BM (2014) Microstructural and mechanical studies of PVA doped with ZnO and WO3 composites films. J Polym 2014:1–7. https://doi.org/10.1155/2014/846140

    Article  Google Scholar 

  218. Dobretsov S (2008) Inhibition and induction of marine biofouling by biofilms introduction: biofilms and biofouling. Marine Ind Biofouling. https://doi.org/10.1007/7142

    Article  Google Scholar 

  219. Magin CM, Cooper SP, Brennan AB (2010) Non-toxic antifouling strategies. Mater Today 13:36–44. https://doi.org/10.1016/S1369-7021(10)70058-4

    Article  CAS  Google Scholar 

  220. Kim S, Rajapakse N (2005) Enzymatic production and biological activities of chitosan oligosaccharides ( COS ): a review. Carbohyd Polym 62:357–368. https://doi.org/10.1016/j.carbpol.2005.08.012

    Article  CAS  Google Scholar 

  221. Alishahi A, Aïder M (2012) Applications of chitosan in the seafood industry and aquaculture: a review. Food Bioprocess Technol 5:817–830. https://doi.org/10.1007/s11947-011-0664-x

    Article  CAS  Google Scholar 

  222. Saravanan S, Nethala S, Pattnaik S et al (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49:188–193. https://doi.org/10.1016/j.ijbiomac.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  223. Al-naamani L, Dobretsov S, Dutta J, Burgess JG (2017) Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere 168:408–417. https://doi.org/10.1016/j.chemosphere.2016.10.033

    Article  CAS  PubMed  Google Scholar 

  224. Mousavi A, Mohammad S, Hashemi B, Limbo S (2018) Food and bioproducts processing antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food Bioprod Process 111:1–19. https://doi.org/10.1016/j.fbp.2018.05.001

    Article  CAS  Google Scholar 

  225. Ates M, Daniels J, Arslan Z et al (2013) Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ Sci Process Impacts 15:225–233. https://doi.org/10.1039/c2em30540b

    Article  CAS  PubMed  Google Scholar 

  226. Luo Z, Qin Y, Ye Q (2015) Effect of nano-TiO2-LDPE packaging on microbiological and physicochemical quality of Pacific white shrimp during chilled storage. Int J Food Sci Technol 50:1567–1573. https://doi.org/10.1111/ijfs.12807

    Article  CAS  Google Scholar 

  227. Kariminejad M, Sadeghi E, Rouhi M et al (2018) The effect of nano-SiO2 on the physicochemical and structural properties of gelatin-polyvinyl alcohol composite films. J Food Process Eng 41:1–9. https://doi.org/10.1111/jfpe.12817

    Article  CAS  Google Scholar 

  228. Sharaf OM, Al-gamal MS, Ibrahim GA et al (2019) Evaluation and characterization of some protective culture metabolites in free and nano-chitosan-loaded forms against common contaminants of Egyptian cheese. Carbohyd Polym 223:115094. https://doi.org/10.1016/j.carbpol.2019.115094

    Article  CAS  Google Scholar 

  229. Youssef HF, El-naggar ME, Fouda FK, Youssef AM (2019) Antimicrobial packaging fi lm based on biodegradable CMC/PVA-zeolite doped with noble metal cations. Food Packag Shelf Life 22:100378. https://doi.org/10.1016/j.fpsl.2019.100378

    Article  Google Scholar 

  230. Casariego A, Souza BWS, Vicente AA et al (2008) Chitosan coating surface properties as affected by plasticizer, surfactant and polymer concentrations in relation to the surface properties of tomato and carrot. Food Hydrocolloids 22:1452–1459. https://doi.org/10.1016/j.foodhyd.2007.09.010

    Article  CAS  Google Scholar 

  231. Shiekh RA, Malik MA, Al-Thabaiti SA, Shiekh MA (2013) Chitosan as a novel edible coating for fresh fruits. Food Sci Technol Res 19:139–155. https://doi.org/10.3136/fstr.19.139

    Article  CAS  Google Scholar 

  232. Higueras L, López-carballo G, Hernández-muñoz P et al (2014) Antimicrobial packaging of chicken fi llets based on the release of carvacrol from chitosan/cyclodextrin fi lms. Int J Food Microbiol 188:53–59. https://doi.org/10.1016/j.ijfoodmicro.2014.07.018

    Article  CAS  PubMed  Google Scholar 

  233. Ul-Islam M, Khattak WA, Ullah MW et al (2014) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21:433–447. https://doi.org/10.1007/s10570-013-0109-y

    Article  CAS  Google Scholar 

  234. Huan Y, Zhang X, Song J et al (2018) High-performance piezoelectric composite nanogenerator based on Ag/(K, Na)NbO3 heterostructure. Nano Energy 50:62–69. https://doi.org/10.1016/j.nanoen.2018.05.012

    Article  CAS  Google Scholar 

  235. Youssef AM, Assem FM, Abdel-aziz ME et al (2019) Development of bionanocomposite materials and its use in coating of Ras cheese. Food Chem 270:457–465. https://doi.org/10.1016/j.foodchem.2018.07.114

    Article  CAS  Google Scholar 

  236. Leder G, Ladwig T, Valter V et al (2002) New effects of fumed silica in modern coatings. Prog Org Coat 45:139–144. https://doi.org/10.1016/S0300-9440(02)00049-8

    Article  CAS  Google Scholar 

  237. Espitia PJP, Soares DFF, N, Teófilo RF, et al (2013) Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohyd Polym 94:199–208. https://doi.org/10.1016/j.carbpol.2013.01.003

    Article  CAS  Google Scholar 

  238. Dai Y, Lv F, Wang B, Chen Y (2018) Thermoresponsive phenolic formaldehyde amines with strong intrinsic photoluminescence: Preparation, characterization and application as hardeners in waterborne epoxy resin formulations. Polymer 145:454–462. https://doi.org/10.1016/j.polymer.2018.05.007

    Article  CAS  Google Scholar 

  239. Surnova A, Balkaev D, Musin D et al (2019) Fully exfoliated graphene oxide accelerates epoxy resin curing, and results in dramatic improvement of the polymer mechanical properties. Compos B 162:685–691. https://doi.org/10.1016/j.compositesb.2019.01.020

    Article  CAS  Google Scholar 

  240. Ghazi A, Ghasemi E, Mahdavian M et al (2015) The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating. Corros Sci 94:207–217. https://doi.org/10.1016/j.corsci.2015.02.007

    Article  CAS  Google Scholar 

  241. Ramezanzadeh B, Haeri H, Ramezanzadeh M (2016) A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem Eng J 303:511–528. https://doi.org/10.1016/j.cej.2016.06.028

    Article  CAS  Google Scholar 

  242. Ai D, Mo R, Wang H et al (2019) Progress in Organic Coatings Preparation of waterborne epoxy dispersion and its application in 2K waterborne epoxy coatings. Prog Org Coat 136:105258. https://doi.org/10.1016/j.porgcoat.2019.105258

    Article  CAS  Google Scholar 

  243. Pourhashem S, Rashidi A, Reza M, Reza M (2017) Surface & Coatings Technology Excellent corrosion protection performance of epoxy composite coatings fi lled with amino-silane functionalized graphene oxide. Surf Coat Technol 317:1–9. https://doi.org/10.1016/j.surfcoat.2017.03.050

    Article  CAS  Google Scholar 

  244. Matin E, Attar MM, Ramezanzadeh B (2014) Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2014.07.004

    Article  Google Scholar 

  245. Shajudheen VPM, Kumar SS, Kumar VS et al (2018) Enhancement of anticorrosion properties of stainless steel 304L using nanostructured ZnO thin films. AIMS Mater Sci 5:932–944. https://doi.org/10.3934/MATERSCI.2018.5.932

    Article  Google Scholar 

  246. Praveen BM, Venkatesha TV, Naik YA, Prashantha K (2007) Corrosion studies of carbon nanotubes–Zn composite coating. Surf Coat Technol 201:5836–5842. https://doi.org/10.1016/j.surfcoat.2006.10.034

    Article  CAS  Google Scholar 

  247. Zheludkevich ML, Shchukin DG, Yasakau KA, Ferreira MGS (2007) Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem Mater 19:402–411. https://doi.org/10.1021/cm062066k

    Article  CAS  Google Scholar 

  248. Ho MY, Khiew PS, Isa D, Tan TK (2014) A review of metal oxide composite electrode materials for electrochemical capacitors. Nano Brief Rep Rev 9:1–25. https://doi.org/10.1142/S1793292014300023

    Article  CAS  Google Scholar 

  249. Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46:169–185. https://doi.org/10.1016/S0169-409X(00)00134-4

    Article  CAS  PubMed  Google Scholar 

  250. Jain AK, Sharma S, Vaidya A et al (2013) 1,3,4-Thiadiazole and its derivatives: a review on recent progress in biological activities. Chem Biol Drug Des 81:557–576. https://doi.org/10.1111/cbdd.12125

    Article  CAS  PubMed  Google Scholar 

  251. Rajeh A, Morsi MA, Elashmawi IS (2019) Enhancement of spectroscopic, thermal, electrical and morphological properties of polyethylene oxide/carboxymethyl cellulose blends: combined FT-IR/DFT. Vacuum 159:430–440. https://doi.org/10.1016/j.vacuum.2018.10.066

    Article  CAS  Google Scholar 

  252. Awad S, El-gamal S, El Sayed AM, Abdel-hady EE (2019) Characterization, optical, and nanoscale free volume properties of Na-CMC/PAM/CNT nanocomposites. Polym Adv Technol 31:114–125. https://doi.org/10.1002/pat.4753

    Article  CAS  Google Scholar 

  253. Mazuki NF, Fuzlin AF, Saadiah MA, Samsudin AS (2019) An investigation on the abnormal trend of the conductivity properties of CMC/PVA-doped NH4Cl-based solid biopolymer electrolyte system. Ionics 25:2657–2667. https://doi.org/10.1007/s11581-018-2734-9

    Article  CAS  Google Scholar 

  254. Zhang D, Zhou X, Roscow J et al (2017) Significantly enhanced energy storage density by modulating the aspect ratio of BaTiO3 nanofibers. Sci Rep 7:45179. https://doi.org/10.1038/srep45179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Granstrom J, Feenstra J, Sodano HA (2006) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:1–21. https://doi.org/10.1088/0964-1726/16/3/R01

    Article  CAS  Google Scholar 

  256. Advances RSC, Lin M, Thakur K et al (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578. https://doi.org/10.1039/c1ra00210d

    Article  CAS  Google Scholar 

  257. Jaleh B, Jabbari A (2014) Evaluation of reduced graphene oxide/ZnO effect on properties of PVDF nanocomposite films. Appl Surf Sci 320:339–347. https://doi.org/10.1016/j.apsusc.2014.09.030

    Article  CAS  Google Scholar 

  258. Ruan L, Yao X, Chang Y et al (2018) Properties and applications of the β phase poly(vinylidene fluoride). Polymer 10:228. https://doi.org/10.3390/polym10030228

    Article  CAS  Google Scholar 

  259. Li X, Li Y, Xie S et al (2022) Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes. Chem Eng J. https://doi.org/10.1016/j.cej.2021.131799

    Article  PubMed  PubMed Central  Google Scholar 

  260. Balakumar S, Keller V, Shankar MV (2021) Nanostructured materials for environmental applications. Springer, Cham

    Book  Google Scholar 

  261. Inamuddin AAM, Lichtfouse E (2020) Nanophotocatalysis and environmental applications. Springer, Cham

    Book  Google Scholar 

  262. Cesaro A, Belgiorno V (2014) Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem Eng J 240:24–37. https://doi.org/10.1016/j.cej.2013.11.055

    Article  CAS  Google Scholar 

  263. Raizada P, Sudhaik A, Singh P (2019) Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater Sci Energy Technol 2:509–525. https://doi.org/10.1016/j.mset.2019.04.007

    Article  Google Scholar 

  264. Henri P, Guy A, Fanou D et al (2020) Photocatalytic degradation of Rhodamine B dye with—TiO2 immobilized on SiC foam using full factorial design. Appl Water Sci 10:1–9. https://doi.org/10.1007/s13201-020-01282-4

    Article  CAS  Google Scholar 

  265. Anand KV, Kumar JA, Keerthana K et al (2019) Photocatalytic degradation of rhodamine B dye using biogenic hybrid ZnO–MgO nanocomposites under visible light. ChemistrySelect 4:5178–5184. https://doi.org/10.1002/slct.201900213

    Article  CAS  Google Scholar 

  266. Girvar P, Rawat P, Vaya D (2020) Malachite green: recent developments. In: malachite green: properties and uses, pp 1–35

  267. Theerthagiri J, Id KK, Durai G et al (2018) Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: a brief review. Nanomaterials 8:28. https://doi.org/10.3390/nano8040256

    Article  CAS  Google Scholar 

  268. Reddy KR, Jyothi MS, Raghu AV et al (2020) Nanocarbons-supported and polymers-supported titanium dioxide nanostructures as efficient photocatalysts for remediation of contaminated wastewater and hydrogen production, pp 139–169

  269. Tang C, Chen C, Zhang H et al (2020) Physica B: Physics of Condensed Matter Enhancement of degradation for nitrogen doped zinc oxide to degrade methylene blue. Phys B Phys Condens Matter 583:412029. https://doi.org/10.1016/j.physb.2020.412029

    Article  CAS  Google Scholar 

  270. Tarasenka N, Butsen A, Pankov V et al (2017) Nano-structures & nano-objects laser assisted preparation of doped ZnO nanocrystals. Nano-Struct Nano-Obj 12:210–219. https://doi.org/10.1016/j.nanoso.2017.10.008

    Article  CAS  Google Scholar 

  271. Mir SH, Hasan PMZ, Danish EY, Aslam M (2020) Pd-induced phase separation in poly (methyl methacrylate) telopolymer: synthesis of nanostructured catalytic Pd nanorods. Colloid Polym Sci 66:1–8

    Google Scholar 

  272. Liang X, Wang P, Gao Y et al (2020) Applied Catalysis B: Environmental Design and synthesis of porous M-ZnO/CeO2 microspheres as e ffi cient plasmonic photocatalysts for nonpolar gaseous molecules oxidation: Insight into the role of oxygen vacancy defects and M = Ag, Au nanoparticles. Appl Catal B Environ 260:118151. https://doi.org/10.1016/j.apcatb.2019.118151

    Article  CAS  Google Scholar 

  273. Mun K, Wei C, Sing K, Ching J (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448. https://doi.org/10.1016/j.watres.2015.09.045

    Article  CAS  Google Scholar 

  274. Belver C, Bedia J, Go A, Pen M (2019) Semiconductor photocatalysis for water purification. Nanoscale Mater Water Purific. https://doi.org/10.1016/B978-0-12-813926-4.00028-8

    Article  Google Scholar 

  275. Adhikari S, Banerjee A, Eswar NK et al (2015) Photocatalytic inactivation of E. coli by ZnO–Ag nanoparticles under solar radiation. RSC Adv. https://doi.org/10.1039/C5RA06406F

    Article  Google Scholar 

  276. Rokesh K, Mohan SC, Karuppuchamy S, Jothivenkatachalam K (2017) Photo-assisted advanced oxidation processes for rhodamine B degradation. Biochem Pharmacol. https://doi.org/10.1016/j.jece.2017.01.023

    Article  Google Scholar 

  277. Husain S, Ochiai B, Soc JE (2018) Conductive polymer-Ag honeycomb thin film: the factors affecting the complexity of the microstructure. J Electrochem Soc. https://doi.org/10.1149/2.0031808jes

  278. Mir SH, Ochiai B (2017) One-pot fabrication of hollow polymer@Ag nanospheres for printable translucent conductive coatings. Adv Mater Interfaces 1601198:1–7. https://doi.org/10.1002/admi.201601198

    Article  CAS  Google Scholar 

  279. Mrowetz M, Selli E (2006) Photocatalytic degradation of formic and benzoic acids and hydrogen peroxide evolution in TiO2 and ZnO water suspensions. J Photochem Photobiol A 180:15–22. https://doi.org/10.1016/j.jphotochem.2005.09.009

    Article  CAS  Google Scholar 

  280. Kositzi M, Poulios I, Samara K et al (2007) Photocatalytic oxidation of Cibacron Yellow LS-R. J Hazard Mater 146:680–685. https://doi.org/10.1016/j.jhazmat.2007.04.071

    Article  CAS  PubMed  Google Scholar 

  281. Chatzitakis A, Berberidou C, Paspaltsis I et al (2008) Photocatalytic degradation and drug activity reduction of Chloramphenicol. Water Res 42:386–394. https://doi.org/10.1016/j.watres.2007.07.030

    Article  CAS  PubMed  Google Scholar 

  282. Rabindranathan S, Devipriya S, Yesodharan S (2003) Photocatalytic degradation of phosphamidon on semiconductor oxides. J Hazard Mater 102:217–229. https://doi.org/10.1016/S0304-3894(03)00167-5

    Article  CAS  PubMed  Google Scholar 

  283. Akyol A, Bayramo M (2005) Photocatalytic degradation of Remazol Red F3B using ZnO catalyst. J Hazard Mater 124:241–246. https://doi.org/10.1016/j.jhazmat.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  284. Sirtori C, Altvater PK, De FAM, Peralta-zamora PG (2006) Degradation of aqueous solutions of camphor by heterogeneous photocatalysis. J Hazard Mater 129:110–115. https://doi.org/10.1016/j.jhazmat.2005.08.017

    Article  CAS  PubMed  Google Scholar 

  285. Davis AP, Huang CP (1989) Removal of phenols from water by a photocatalytic oxidation process. Water Sci Technol 21:455–464. https://doi.org/10.1016/B978-1-4832-8439-2.50047-X

    Article  CAS  Google Scholar 

  286. Saravanan R, Shankar H, Prakash T et al (2011) ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater Chem Phys 125:277–280. https://doi.org/10.1016/j.matchemphys.2010.09.030

    Article  CAS  Google Scholar 

  287. Lai Y, Meng M, Yu Y (2010) One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation. Appl Catal B 100:491–501. https://doi.org/10.1016/j.apcatb.2010.08.027

    Article  CAS  Google Scholar 

  288. Malato S, Blanco J, Campos A et al (2003) Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale. Appl Catal B 42:349–357

    Article  CAS  Google Scholar 

  289. Karthik KV, Raghu AV, Raghava K et al (2022) Green synthesis of Cu-doped ZnO nanoparticles and its application for the photocatalytic degradation of hazardous organic pollutants. Chemosphere 287:132081. https://doi.org/10.1016/j.chemosphere.2021.132081

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors AA, CS and DV would like to acknowledge the support provided under the DST-FIST Grant No.SR/FST/PS-I/2019/68 of Govt. of India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti Vaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asture, A., Rawat, V., Srivastava, C. et al. Investigation of properties and applications of ZnO polymer nanocomposites. Polym. Bull. 80, 3507–3545 (2023). https://doi.org/10.1007/s00289-022-04243-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04243-w

Keywords

Navigation