Skip to main content
Log in

Characterization of thermo-sensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, an hydrogel was synthesized from the monomer N-isopropylacrylamide (NIPA), generating the poly(N-isopropylacrylamide) (PNIPA) and other formulations were synthesized in the presence of 1, 2, and 3% hyaluronic acid (HA) for obtain an interpenetrating polymer network. For all the obtained hydrogels, the thermo-sensitive response was studied since the lower critical solution temperature (LCST) and was analyzed by differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and oscillatory rheology at constant frequency as a function of temperature. The LCST transition temperature (Tt onset) was found between 34.4 and 35.5 °C. By scanning electron microscopy (SEM) PNIPA-HA formulations showed a porous morphology. The applicability of the hydrogels as injectable and non-toxic materials was verified, respectively, by rheology results and by cytotoxicity studies through an in vitro test of cell hemolysis on blood agar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mark H (2005) Concise encyclopedia of polymer science and technology, vol 2, 3rd edn. Wiley, New York

    Google Scholar 

  2. Ruel-Gariepy E, Leroux JC (2004) In situ-forming hydrogels-review of temperature-sensitive systems. Eur J Pharm Biopharm 58:409–426

    Article  CAS  Google Scholar 

  3. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  Google Scholar 

  4. Guilherme MR, Campesea GM, Radovanovic E, Rubira AF, Tambourgi EB, Muniz EC (2006) Thermo-responsive sandwiched-like membranes of IPN-PNIPAAm/PAAm hydrogels. J Membr Sci 275:187–194

    Article  CAS  Google Scholar 

  5. Pelton R (2010) Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. J Colloid Interface Sci 348(2):673–674

    Article  CAS  Google Scholar 

  6. Ratner BD, Hoffman AS (1996) Biomaterials science—an introduction to materials in medicine. Academic Press, New York

    Google Scholar 

  7. Manna F, Dentini M, Desideri P, De Pita O, Mortilla E, Maras B (1999) Comparative chemical evaluation of two commercially available derivatives of hyaluronic acid used for soft tissue augmentation. J Eur Acad Dermatol Venereol 13:183–192

    CAS  Google Scholar 

  8. Zeng F, Tong Z, Feng H (1997) NMR investigation of phase separation in poly(N-isopropyl acrylamide)/water solutions. Polymer 38:5539–5544

    Article  CAS  Google Scholar 

  9. Kim WG, Choi YJ, Kim MS, Park YD, Lee KB, Kim IS, Hwang SJ, Noh I (2007) Synthesis and evaluation of hyaluronic acid–poly(ethylene oxide) hydrogel via Michael-type addition reaction. Curr Appl Phys 7(1):e28–e32

    Article  Google Scholar 

  10. Stile RA, Burghardt WR, Healy KE (1999) Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromol 32:7370–7379

    Article  CAS  Google Scholar 

  11. Jian H, Zhiming H, Yhongzhong B, Zhixue W (2006) Thermosensitive poly(N-isopropylacrylamide-co-acrylonitrile) hydrogels with rapid response. Chin J Chem Eng 4(1):87–92

    Google Scholar 

  12. Deshmukh MV, Vaidya AA, Kulkarni MG, Rajamohanan PR, Ganapathy S (2000) LCST in poly(N-isopropylacrylamide) copolymers: high resolution proton NMR investigations. Polymer 41:7951–7960

    Article  CAS  Google Scholar 

  13. Liu M, Bian F, Sheng F (2005) FTIR study on molecular structure of poly(N-isopropylacrylamide) in mixed solvent of methanol and water. Eur Polym J 41:283–291

    Article  CAS  Google Scholar 

  14. Zareie MH, Dincer S, Piskin E (2002) Observation of phase transition of thermo-responsive poly(NIPA)–PEI block copolymers by STM. J Colloid Interface Sci 251:424–428

    Article  CAS  Google Scholar 

  15. Suetoh Y, Shibayama M (2000) Effects of non-uniform solvation on thermal response in poly(N-isopropylacrylamide) gels. Polymer 41:505–510

    Article  CAS  Google Scholar 

  16. Liu W, Zhang B, Lu WW, Li X, Zhu D, Yao KD, Wang Q, Zhao C, Wang C (2004) A rapid temperature-responsive sol–gel reversible poly(N-isopropyl-acrylamide)-g-methylcellulose copolymer hydrogel. Biomaterials 25:3005–3012

    Article  CAS  Google Scholar 

  17. Ohya Sh, Sonoda H, Nakayama Y, Matsuda T (2005) The potential of poly(N-isopropylacrylamide) (PNIPAM)-grafted hyaluronan and PNIPAM-grafted gelatin in the control of post-surgical tissue adhesions. Biomaterials 26:655–659

    Article  CAS  Google Scholar 

  18. Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R (2002) Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 23:4503–4513

    Article  CAS  Google Scholar 

  19. Palumbo FS, Pitarresi G, Mandracchia D, Tripodo G, Giammona C (2006) New graft copolymers of hyaluronic acid and polylactic acid: synthesis and characterization. Carbohydr Polym 66:379–385

    Article  CAS  Google Scholar 

  20. Tan H, Ramirez CM, Miljkovic N, Li H, Rubin JP, Marra KG (2009) Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials 30:6844–6845

    Article  CAS  Google Scholar 

  21. Ohya Sh, Kidoaki S, Matsuda T (2005) Poly(N-isopropylacrylamide) (PNIPAM)-grafted gelatinhydrogel surfaces: interrelationship between microscopic structure and mechanical property of surface regions and cell adhesiveness. Biomaterials 26:3105–3111

    Article  CAS  Google Scholar 

  22. Zhang XZ, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPA-AAm hydrogels. Biomaterials 25:3793–3805

    Article  CAS  Google Scholar 

  23. Ní Chearúil F, Corrigan OI (2009) Thermosensitivity and release from poly N-isopropylacrylamide–polylactide copolymers. Int J Pharm 366(1–2):21–30

    Article  Google Scholar 

  24. Starovoytova L, Spevaceka J, Ilavsky M (2005) 1H-NMR study of temperature-induced phase transitions in D2O solutions of poly(N-isopropylmethacrylamide)/poly(N-isopropylacrylamide) mixtures and random copolymers. Polymer 46:677–683

    Article  CAS  Google Scholar 

  25. Kesim H, Rzaev Z, Dincer S, Piskin E (2003) Functional bioengineering copolymers. II. Synthesis and characterization of amphiphilic poly(N-isopropyl acrylamide-co-maleic anhydride) and its macrobranched derivatives. Polymer 44:2897–2909

    Article  CAS  Google Scholar 

  26. Zenga F, Tong Z, Yang X (1997) Differences in vibrational spectra of poly(N-isopropyl acrylamide) from water solution before and after phase separation. Eur Polym J 33(9):1553–1556

    Article  Google Scholar 

  27. Winnik FM (1990) Phase transition of aqueous poly-(N-isopropylacrylamide) solutions: a study by non-radiative energy transfer. Polymer 31(11):2125–2134

    Article  CAS  Google Scholar 

  28. Turk M, Dincer S, Yulug IG, Piskin E (2004) In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers. J Controlled Release 96:325–340

    Article  CAS  Google Scholar 

  29. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydr Polym 66:229–245

    Article  CAS  Google Scholar 

  30. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12

    Article  CAS  Google Scholar 

  31. Khalid MN, Agnely F, Yagoubi N, Grossiord JL, Couarraze G (2002) Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. Eur J Pharm Sci 15:425–432

    Article  CAS  Google Scholar 

  32. Dimitrov I, Trzebicka B, Muller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343

    Article  CAS  Google Scholar 

  33. Kara S, Pekcan O (2003) Phase transitions of N-isopropylacrylamide gels prepared with various crosslinker contents. Mater Chem Phys 80:555–559

    Article  CAS  Google Scholar 

  34. Afroze F, Nies E, Berghmans H (2000) Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J Mol Struct 554:55–68

    Article  CAS  Google Scholar 

  35. Portehault D, Petit L, Pantoustier N, Ducouret G, Lafuma F, Hourdet D (2006) Hybrid thickeners in aqueous media. Colloids Surf A 278:26–32

    Article  CAS  Google Scholar 

  36. Aamer KA, Sardinha H, Bhatia SR, Tew GN (2004) Rheological studies of PLLA–PEO–PLLA triblock copolymer hydrogels. Biomaterials 25:1087–1093

    Article  CAS  Google Scholar 

  37. Leone G, Delfini M, Di Cocco ME, Borioni A, Barbucci R (2008) The applicability of an amidated polysaccharide hydrogel as a cartilage substitute: structural and rheological characterization. Carbohydr Res 343:317–327

    Article  CAS  Google Scholar 

  38. Sandolo C, Matricardi P, Alhaique F, Coviello T (2007) Dynamo-mechanical and rheological characterization of guar gum hydrogels. Eur Polym J 43:3355–3367

    Article  CAS  Google Scholar 

  39. Fu G, Soboyejo WO (2010) Swelling and diffusion characteristics of modified poly (N-isopropylacrylamide) hydrogels. Mater Sci Eng C 30:8–13

    Article  CAS  Google Scholar 

  40. Hanks CT, Watahaz JC, Suni Z (1996) In vitro models of biocompatibility: a review. Dent Mater 12:186–193

    Article  CAS  Google Scholar 

  41. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    Article  CAS  Google Scholar 

  42. Sabino MA, Feijoo JL, Núñez O, Ajami D (2002) Interaction of fibroblast with poly(p-dioxanone) and its degradation products. J Mater Sci 37:35–40

    Article  CAS  Google Scholar 

  43. Ohya S, Nakayama Y, Matsuda T (2001) Thermoresponsive artificial extracellular matrix for tissue engineering: hyaluronic acid bioconjugated with poly(N-isopropylacrylamide) grafts. Biomacromolecules 2:856–863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Alejandro J. Müller (Head of USB Polymer Group GPUSB-1, Department of Materials Science, Universidad Simón Bolívar) for providing fructiferous discussions on the results here presented and for to use some equipments to characterize these samples. Also, thanks to the Decanato de Investigación y Desarrollo (DID) for their financial support through the Fund-PPI. Also thank for support from thematic IberoAmerican network BIOFAB (Biofabricação: Materiais, Processes e Simulação) funded by CYTED.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos A. Sabino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coronado, R., Pekerar, S., Lorenzo, A.T. et al. Characterization of thermo-sensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid. Polym. Bull. 67, 101–124 (2011). https://doi.org/10.1007/s00289-010-0407-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0407-6

Keywords

Navigation