Skip to main content

Sisal Fiber Based Polymer Composites and Their Applications

  • Chapter
  • First Online:
Cellulose Fibers: Bio- and Nano-Polymer Composites

Abstract

The natural resources of the World are depleting very fast due to the high rate of exploitation and low rate of restoration, leading to an increase in global warming and pollution hazards. In recent years, there has been increasing interest in the substitution of synthetic fibers in reinforced plastic composites by natural plant fibers such as jute, coir, flax, hemp, and sisal. Sisal is one of the natural fibers widely available in most parts of the world; it requires minimum financial input and maintenance for cultivation and is often grown in wastelands, which helps in soil conservation. Advantages of sisal fiber are: low density and high specific strength, biodegradable and renewable resource, and it provides thermal and acoustic insulation. Sisal fiber is better than other natural fibers such as jute in many ways, including its higher strength, bright shiny color, large staple length, poor crimp property, variation in properties and quality due to the growing conditions, limited maximum processing temperatures. In recent years, there has been an increasing interest in finding innovative applications for sisal fiber-reinforced composites other than their traditional use in making ropes, mats, carpets, handicrafts, and other fancy articles. Composites made of sisal fibers are green materials and do not consume much energy for their production.

The characteristics of composites depend on different parameters such as extraction of fiber, surface modification and the synthesis of composites. During synthesis, fiber length, orientation, concentration, dispersion, aspect ratios, selection of matrix, and chemistry of matrix have to be considered to achieve the required strength. Inorganic fibers have several disadvantages, including their nonbiodegradability, the abrasion in processing equipments, high cost and density, and the health problems caused to workers during processing and handling. Commonly used composites, these days are, glass, aramid, carbon, and asbestos fibers filled in thermoplastic, thermoset, or cement composites. Yet natural fiber composites with equivalent characteristics to synthetic fibre composites are not available. Most of the plant fibers are hydrophilic in nature and water absorption may be very high. This may be controlled by different methods of interfacial surface modification. Because of the low density and high specific strength and modulus. Sisal fiber is a potential resource material for various engineering applications in the electrical industry, automobiles, railways, building materials, geotextiles, defense and in the packaging industry. Present chapter discuss about the research work on sisal cultivation, fiber extraction, processing, sisal fiber characteristics, and the use of sisal fiber in thermoplastic and thermoset polymer composites for various engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPRI:

Advanced Materials and Processes Research Institute

Aq:

Aqueous

BMC:

Bulk Molding Compound

BPO:

Benzoyl Peroxide

CBRI:

Central Building Research Institute

CRIJAF:

Central Research Institute for Jute and Allied Fibers

CSIR:

Council of Scientific and Industrial Research

DSC:

Differential Scanning Calorimetry

DTA:

Differential Thermal Analyser

DCP:

Dicumyl Peroxide

FSP:

Fiber Saturation Point

GCL:

Geosynthetic Clay Liners

HDPE:

High Density Polyethylene

HC5 :

Hostaprime

L:

Longitudinal

LS:

Longitudinal Section

LDPE:

Low Density Polyethylene

IPIRTI:

Indian Plywood Industries Research and Training Institute

MA-g-PP:

Maleic Anhydride-Grafting Polypropylene

MAPP:

Maleic Anhydride Polypropylene

MMA:

Methylmethacrylate

NIRJAFT:

National Institute of Research on Jute and Allied Fiber Technology

PE:

Polyethylene

PEEK:

Polyether Ether Ketone

PP:

Polypropylene

PS:

Polystyrene

PVC:

Polyvinyl Chloride

R:

Randomly

R&D:

Research and Development

RTM:

Resin Transfer Molding

SEM:

Scanning Electron Microscope

TGA:

Thermal Gravimetric Analysis

TIFAC:

Technology Information, Forecasting and Assessment Council

TPA:

Tons Per Annum

UFR:

Urea–Formaldehyde Resin

UNIDO:

United Nation Industrial Development Organization

References

  1. Berglund L (2006) New concepts in natural fiber composites. Proceeding of the 27th Riso International Symposium on Materials Science. Polymer Composite Materials for Wind Power Turbines: 1-9.

    Google Scholar 

  2. John MJ et al (2003) Lignocellulosic fiber reinforced rubber composites, Chap 10. Old City, Philadelphia, pp 252–269

    Google Scholar 

  3. Joseph K, Filho RDT, James B, Thomas S et al (1999a) A reviews on sisal fiber reinforced polymer composite. R. Bras. Eng. Agríc. Ambiental, Campina GrandeV.3 n.3: 367–379

    Google Scholar 

  4. George J, Sreekala MS, Thomas S (2001) A Review on Interface Modification and Characterization of Natural fibre Reinforced Plastic Composites. Polym Eng Sci 41(9):1475–1485

    Google Scholar 

  5. Bisanda ETN (1993) The manufacture of roofing panels from sisal fiber reinforced composites. J Mater Process Technol 38:369–380

    Google Scholar 

  6. Sinha MK et al (2009) Crop diversification for profitability in jute and allied fiber crops. Indian J Agron 54(2):221–225

    Google Scholar 

  7. Muthangya M et al (2009) Two-stage fungal pre-treatment for improved biogas production from sisal leaf decortication residues. Int J Mol Sci 10:4805–4815

    Article  CAS  Google Scholar 

  8. Chynoweth DP et al (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8

    Article  CAS  Google Scholar 

  9. Oksman K, Wallstro L, Berglund LA et al (2002) Morphology and mechanical properties of unidirectional sisal–epoxy composites. J Appl Polym Sci 84:2358–2365

    Article  CAS  Google Scholar 

  10. Kar CS (2008a) Improved package and practices of sisal cultivation in India. In: Sisal fiber technologies for sustainable rural employments generation. Allied Publication, Delhi, pp 1–7

    Google Scholar 

  11. Kar CS (2008b) Nursery management of sisal production of quality planting material. sisal fiber technologies for sustainable rural employments generation. Allied Publication, Delhi, pp 15–23

    Google Scholar 

  12. Leaden DA (2006) Brazil sisal producers aim to recapture market share lost to synthetic fibers. Int Fiber J 21. http://www.braziliansources.com

  13. Wilson PI (1971) Sisal, vol 2. In: Hard fibers research series No. 6. FAO, Rome

    Google Scholar 

  14. Li Y, Mai YW, Ye L (2000) Sisal fiber and its composites: a review of recent developments. Compos Sci Technol 60:2037–2055

    Article  CAS  Google Scholar 

  15. Lewin M (2007) Handbook of fiber chemistry, Chap 8, 3rd edn. Taylor and Francis, London, pp 460–462

    Google Scholar 

  16. Saxena M et al (1998) Fly ash vermicompost from non- ecofriendly organicwastes. Pollut Res 17(1):5–11

    Google Scholar 

  17. Saxena M, Murali S, Nandan MJ et al (2005) Sisal Potential for employment generation and rural development. In: 3rd International Conference Rural India, pp 208–212

    Google Scholar 

  18. Alvarez VA, Vazquez A (2004) Thermal degradation of cellulose derivatives/starch blends and sisal short fiber biocomposites. Polym Degrad Stab 84:13–21

    Article  CAS  Google Scholar 

  19. Das PK, Nag D, Debnath S et al (2010) Machinery for extraction and traditional spinning of plant fibers. Indian J Tradit Knowl 9(2):386–393

    Google Scholar 

  20. Mukherjee PS, Satyanarayana KG (1984) Structure and properties of some vegetable fibers part 1 Sisal fiber. J Mater Sci 19:3925–3934

    Article  CAS  Google Scholar 

  21. Li Y, Mai YW, Ye L (2000) Sisal fiber and its composites a review of recent developments. Compos Sci Technol 60:2037–2055

    Article  CAS  Google Scholar 

  22. Bai SL, Li RKY, Mai W et al (2002) Morphological study of sisal fibers. Adv Compos Lett Abst 11(3)

    Google Scholar 

  23. Chand N, Tiwary RK, Rohatgi PK (1988) Bibliography resource structure properties of natural cellulosic fibers –an annotated bibliography. J Mater Sci 23:381–387

    Article  CAS  Google Scholar 

  24. Young R et al (1992) Activation and characterization of fibre surface for composites in emerging technologies for materials and chemicals for biomass. ACS Symp Ser 476:12

    Google Scholar 

  25. Chand N, Hashmi S (1993) Effect of plant age on structure and strength of sisal fiber. Met Mater Process 5:51–57

    CAS  Google Scholar 

  26. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers biopolymers and biocomposites. CRC, Boca Raton

    Google Scholar 

  27. Babu MS, Bakshi S, Srikant G et al (2004) Thermoplastic Composites – Technology and business opportunities. In: Proceedings of the international conference & exhibition on reinforced plastics (ICERP 2004), Chennai, India, 12–14 Feb 2004, pp 226–237

    Google Scholar 

  28. Leao AL, Rowell R, Tavares N (1997) Application of natural fiber in automotive industry in Brazil- thermoforming process. In: 4th International conference on frontiers of polymers and advanced materials conference proceedings, Caoro, Egypt, Plenum, New York, pp 755–760

    Google Scholar 

  29. Young RA (1992) Activation and characterization of fiber surfaces for composites. In: Rowell RM, Schultz T, Narayanan R (eds) Emerging technologies for materials and chemicals from biomass, Chap 9. American Chemical Society, Washington DC, pp 115–135

    Chapter  Google Scholar 

  30. Wakida T, Tokino S (1999) Indian J Fiber Text Res 21:69.

    Google Scholar 

  31. Dong S et al (1992) Rheological properties of corona modified cellulose polyethylene composites. Polym Eng Sci 32:1734

    Article  CAS  Google Scholar 

  32. Albano C, Poleo R, Reyes J et al (2003) Considerations on the mechanical properties of gamma irradiated polyethylene reinforced with sisal fibers. Revista de la Facultad de Ingeniería de la U.C.V, vol 18, pp 83–87

    Google Scholar 

  33. Kalia S, Kaith BS, Kaur I (2009) Pretreatment of natural fiber and their application as reinforcing material in polymer composites – a review. Polym Eng Sci 49:1253–1272

    Article  CAS  Google Scholar 

  34. Kalaprasad G, Thomas S (2003) Melt rheological behavior of intimately mixed short sisal-glass hybrid fiber-reinforced low-density polyethylene composites. II chemical modification. J Appl Polym Sci 89:443–450

    Article  CAS  Google Scholar 

  35. Sydenstricker THD, Mochnaz S, Amico SC (2003) Pullout and other evaluations in sisal-reinforced polyester biocomposites. Polym Test 22:375–380

    Article  CAS  Google Scholar 

  36. Mishra S, Misra M, Tripathy SS et al (2001) Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol Mater Eng 286:107–113

    Article  CAS  Google Scholar 

  37. Mishra S et al (2001) Potentiality of pineapple leaf fiber as reinforcement in PALF polyester composite surface modification and mechanical performance. J Reinf Plast Comp 20(4):321–334

    Article  CAS  Google Scholar 

  38. Rong MZ, Zhang MQ, Liu Y et al (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61:1437–1447

    Article  CAS  Google Scholar 

  39. González L, Cervantes-Uc JM, Olayo R et al (1999) Chemical modification of henequen fibers with an organosilane coupling agent. Compos B 30:321–331

    Article  Google Scholar 

  40. Jacob M, Varughese KT, Thomas S et al (2006) Dielectric characteristics of sisal-oil palm hybrid bio-fiber reinforced natural rubber bio-composites. Society of Plastics Engineers, pp 671–680

    Google Scholar 

  41. Joseph K et al (2000) Natural fiber reinforced thermoplastic composites, in Proceeding, Natural Polymers and Agro-fibers Composites. In: Frollini E, Leão AL, Mattoso LHC (eds) Natural polymers and agrofibers composites. Sãn Carlos (Brazil): Embrapa, USP-IQSC, UNESP, pp 159–201

    Google Scholar 

  42. Gassan J, Bledzki AK (1999) Alkali treatment of jute fibers: relationship between structure and mechanical properties. J Appl Polym Sci 71:623

    Article  CAS  Google Scholar 

  43. Garcia-Jaldon C, Dupeyre D, Vignon MR (1998) Fibers from semi-retted hemp bundles by steam explosion treatment. Biomass Bioenergy 14:251

    Article  CAS  Google Scholar 

  44. Sreekala MS, Kumaran MG, Joseph S et al (2000) Oil palm fiber reinforced phenol formaldehyde composites influence of fiber surface modifications on the mechanical performance. Appl Comp Mater 7:295–329

    Article  CAS  Google Scholar 

  45. Morrison WH, Archibald DD, Sharma HSS et al (2000) Chemical and physical characterization of water- and dew-retted flax fibers. Ind Crops Prod 12:39–46

    Article  CAS  Google Scholar 

  46. Mishra S, Misra M, Tripathy SS et al (2002) The influence of chemical surface modification on the performance of sisal- polyester bio composite. Polym Compos 23(2):164–170

    Article  CAS  Google Scholar 

  47. Bisanda ETN (2000) The effect of alkali treatment on the adhesion characteristics of sisal fibers. Appl Compos Mater 7:331–339

    Article  CAS  Google Scholar 

  48. Andersson M, Andersson M, Tillman AJ (1989) Acetylation of jute: effects on strength rot resistance, and hydrophobicity. J Appl Polym Sci 37:3437. doi:10.1002/app. 1989.070371214

    Article  CAS  Google Scholar 

  49. Rowell RM (1983) For Prod Abstr 1:363

    Google Scholar 

  50. Hill CAS, Khalil HPS, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibers. Ind Crops Prod 8:53. http://www.thefreelibrary.com/Natural+Fibers

    Google Scholar 

  51. Ebrahimzadeh PR (1997) Dynamic mechanical studies of wood, paper and some polymers subjected to humidity changes. Ph.D. thesis, Chalmers University of Technology, Göteborg, http://www.Fiber2fashion.com

  52. Flemming M, Ziegmann G, Roth S (1995) Faserverbundbauweisen: fasern und matrices. Springer, Berlin

    Google Scholar 

  53. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  54. Mishra S et al (2003) Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos Sci Technol 63:1377–1385

    Google Scholar 

  55. Sreekala MS, Kumaran MG, Thomas S (2002) The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibers. Compos Sci & Technol 62:339–353

    Google Scholar 

  56. Paul A, Joseph K, Thomas S (1997) Effect of surface treatments on the electrical properties of low-density polyethylene composites reinforced with short sisal fibers. Compos Sci Technol 57:67–79

    Article  CAS  Google Scholar 

  57. Paul A et al (1997) Electrical properties of natural fiber reinforced low-density polyethylene composites a comparison with carbon black and glass fiber filled low-density polyethylene composites. J Appl Polym Sci 63:247–266

    Article  CAS  Google Scholar 

  58. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fiber-reinforced polyethylene composites. Polymer 37(23):5139–5149

    Article  CAS  Google Scholar 

  59. Joseph K, Varghese S, Kalaprasad G et al (1996) Influence of interfacial adhesion on the mechanical properties and fracture behaviour of short sisal fiber reinforced polymer composites. Eur Polym J 32(10):1243–1250

    Article  CAS  Google Scholar 

  60. Joseph PV, Mathew G, Joseph K et al (2003) Dynamic mechanical properties of short sisal fiber reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 34:275–290

    Article  Google Scholar 

  61. Joseph PV, Joseph K, Thomas S et al (2003) The thermal and crystallisation studies of short sisal fiber reinforced polypropylene composites. Compos A 34:253–266

    Article  Google Scholar 

  62. Williams GI, Wool RP (2000) Appl Compos Mater 7:421

    Google Scholar 

  63. Coutinho FMB, Costa THS, Carvalho DS (1997) Polypropylene–wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J Appl Polym Sci 65:1227

    Article  CAS  Google Scholar 

  64. González L (1997) Applications of an azide sulfonyl silane as elastomer crosslinking and coupling agent. J Appl Polym Sci 63:1353

    Article  Google Scholar 

  65. Culler SR, Ishida H, Koenig JL (1986) The silane interphase of composites: Effects of process conditions on y-aminopropyltriethoxysilane. Polym Compos 7:231

    Article  CAS  Google Scholar 

  66. Ghatge ND, Khisti RS (1989) Performance of new silane coupling agents alongwith phenolic no- bake binder for sand core. J Polym Mater 6:145

    CAS  Google Scholar 

  67. Sefain MZ et al (1993) Kinetics of heterogenous cyanoethylation of cellulose. Polym Int 32:251

    Google Scholar 

  68. Mohanty AK, Misra M, Drzal LT et al (2001) Surface modifications of natural fibers and performance of the resulting biocomposites an overview. Compos Interf 8(5):313–343

    Article  CAS  Google Scholar 

  69. Monte SJ, Sugerman G (1984) Polym Eng Sci 24:1369

    Google Scholar 

  70. Zahran MK, Rehan MF, ElRafie MH (2005) single bath full bleaching of flax fibers using an activated sodium chlorite/hexamethylene tetramine system. J Nat Fibers 2:49–67

    Article  CAS  Google Scholar 

  71. Raj RG et al (1988) Polym Compos 9:404

    Google Scholar 

  72. George J, Janardhan R, Anand J et al (1996) Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37:5421–5431

    Article  CAS  Google Scholar 

  73. Nair KCM, Thomas S, Groeninckx G (2001) Compos Sci Technol 61:2519

    Google Scholar 

  74. Wang B (2004) Pre-treatment of flax fibers for use in rotationally molded biocomposites. M.Sc. Thesis, University of Saskatchewan, Canada

    Google Scholar 

  75. Saxena M, Kathal A (2004) Development of innovative building materials using polyester, red mud and sisal fiber fabric. In: RTBM Proceedings, pp 238–248

    Google Scholar 

  76. Li Y et al (2007) Chemical treatments of natural fiber use in natural fiber–reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  77. Joseph PV, Rabello MS, Mattoso LHC et al (2002) Environmental effects on the degradation behaviour of sisal fiber reinforced polypropylene composites. Compos Sci Technol 62:1357–1372

    Article  CAS  Google Scholar 

  78. Ganan P, Garbizu S, Llano-Ponte R et al (2005) Surface modification of sisal fibers effects on the mechanical and thermal properties of their epoxy. Polym Compos 26:121–127

    Article  CAS  Google Scholar 

  79. Nair KCM, Diwan SM, Thomas S (1996) Tensile properties of short sisal fiber reinforced polystyrene composites. J Appl Polym Sci 60:1483–1497

    Article  CAS  Google Scholar 

  80. Idicula M, Boudenne A (2006) Thermo physical properties of natural fiber reinforced polyester composites. Compos Sci Technol 66:2719–2725

    Article  CAS  Google Scholar 

  81. Dostal CA (1987) Engineered materials handbook: composites, vol 1. ASM International, Metals Park, OH, USA

    Google Scholar 

  82. Strong AB (1989) Fundamentals of composites manufacturing: materials, methods, and applications. Society of Manufacturing Engineers (SME), Dearborn, Michigan, 252 p

    Google Scholar 

  83. Washington DC: US environmental Protection Agency U.S. Office of enforcement and Compliance Assurance (1995) Introduction to composites, 3rd edn. Society of the Plastics Industry, Washington DC

    Google Scholar 

  84. Silva FA, Chawla N, Filho RDT (2008) Tensile behavior of high performance natural (sisal) fibers. Compos Sci Technol 68:3438–3444

    Article  CAS  Google Scholar 

  85. Barkakaty BC (1976) Some structural aspects of sisal fibers. J Appl Polym Sci 20:2921–2940

    Google Scholar 

  86. Bisanda ETN, Ansell MP (1991) The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Compos Sci Technol 41:165–178

    Google Scholar 

  87. Joseph K, Thomas K, Pavithran C (1992) Viscoelastic properties of short sisal fiber filled low-density polyethylene composites. Effect of fiber length and orientation. Mater Lett 15:224

    Article  CAS  Google Scholar 

  88. Joseph K, Thomas K, Pavithran C (1993) Dynamic mechanical properties of short sisal fiber reinforced low-density polyethylene composites. J Reinf Plastics Compos 12:139

    Article  CAS  Google Scholar 

  89. Joseph K, Thomas K, Pavithran C et al (1993) Tensile properties of short sisal fiber reinforced polyethylene composites. J Appl Polym Sci 47:1731

    Article  CAS  Google Scholar 

  90. Khazanchi AC et al (1990) Material science of natural organic fiber reinforced composites in polymer/cement/mud matrix for construction engineering. In: Hamelin P, Verchery G (eds) A book on textile composites in building construction. Pluralis, France, pp 69–76

    Google Scholar 

  91. Mattoso LHC, Ferreira FC, Curvelo AAS (1997) Sisal fiber Morphology and applications in polymer composites. In: Leao AL, Carvalho FX, Frollin E (eds) Lignocellulosic-plastics composites. USP/UNESP, Sao Paello, pp 21–51

    Google Scholar 

  92. Yi C, Tian L, Tang F et al (2009) Crystalline transition behavior of sisal in cycle process. Society of Plastics Engineers. http://dx.doi.org/10.1002/pc.20885

  93. Bismarck A, Mohanty AK, Aranberri-Askargorta I et al (2001) Surface characterization of natural fiber surface properties and water up take behaviour of modified sisal and coir fiber. Green Chem 3:100–107

    Article  CAS  Google Scholar 

  94. Bogoeva G, Avella M, Malinconico M et al (2007) Natural fiber eco composites. Polym Compos 28:98–107

    Article  Google Scholar 

  95. Shibata M, Ozawa K, Teramoto N et al (2003) Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol Mater Eng 288:35–43

    Article  CAS  Google Scholar 

  96. Geethamma VG et al (1999) Composite of short coir fibers and natural rubber: effect of chemical modification, loading and orientation of fiber. Polymer 39:1483–1491

    Article  Google Scholar 

  97. Lubin G (1982) Handbook of composites. Van Nostrand Reinhold, New York

    Google Scholar 

  98. Li Y (2006) Processing of sisal fiber reinforced composites by resin transfer molding. Mater Manuf Process 21(2):181–190

    Article  CAS  Google Scholar 

  99. Arzondo LM, Vazquez A, Carella JM et al (2004) A low-cost, low-fiber breakage, injection-molding process for long sisal fiber reinforced polypropylene. Polym Eng Sci 44(9):1766–1772

    Article  CAS  Google Scholar 

  100. Pal S, Mukhophadhyay D, Sanyal S et al (1988) Studies on process variables for natural fiber composites–effect of PEAP as interfacial agent. J Appl Polym Sci 35:973–985

    Article  CAS  Google Scholar 

  101. Sreekumar PA, Joseph K, Unnikrishnan K et al (2007) A comparative study on mechanical properties of sisal-leaf fiber-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos Sci Technol 67:453–461

    Article  CAS  Google Scholar 

  102. Singh B, Gupta M, Verma A (1995) Mechanical behaviour of particulate hybrid composite laminates as potential building materials. Construct Build Mater 9:39–44

    Article  Google Scholar 

  103. Zhong JB, Lv J, Wei C (2007) Mechanical properties of sisal fiber reinforced urea formaldehyde resin composites. Express Polym Lett 1(10):681–687

    Article  CAS  Google Scholar 

  104. Kim HJ, Seo DW (2006) Effect of water absorption fatigue on mechanical properties of sisal textile-reinforced composites. Int J Fatigue 28:1307–1314

    Article  CAS  Google Scholar 

  105. Mohanty AK, Verma SK, Nayak SK et al (2004) Influence of fiber treatment on the performance of sisal polypropylene composite. J Appl Polym Sci 94:1336–1345

    Article  CAS  Google Scholar 

  106. Khoathane MC (2005) The processing properties of natural fiber reinforced higher α-olefin based thermoplastics. Magister Technology Polymer Technology, pp 1–85

    Google Scholar 

  107. Beckermann G (2007) Performance of hemp fiber reinforced polypropylene composites materials. Thesis, Materials and process engineering, Waikato University

    Google Scholar 

  108. Bourmaud A, Baley C (2007) Investigations on the recycling of hemp and sisal fiber reinforced polypropylene composites. Polym Degrad Stab 92:1034–1045

    Article  CAS  Google Scholar 

  109. Mishra S, Naik JB (2005) Effect of treatment of maleic anhydride on mechanical properties of natural fiber polystyrene composites. Polym Plastics Technol Eng 44:663–675

    Article  CAS  Google Scholar 

  110. Antich P, Vazquez A, Mondragonb I et al (2006) Mechanical behavior of high impact polystyrene reinforced with short sisal fibers. Compos A 37:139–150

    Article  CAS  Google Scholar 

  111. Sreekumar PA, Leblanc N, Saiter JM (2009) Characterization of bulk agro-green composites sisal fiber reinforced wheat flour thermoplastics. Polym Compos 31:939–945

    Google Scholar 

  112. Jarukumjorn K, Suppakarn N (2009) Effect of glass fiber hybridization on properties of sisal fiber polypropylene composites. Compos B 40:1–5

    Article  Google Scholar 

  113. Oksman K, Mathew AP, Langstrom R (2009) The influence of fiber microstructure on fiber breakage and mechanical properties of natural fiber reinforced polypropylene. Compos Sci Technol 69:1847–1853

    Article  CAS  Google Scholar 

  114. Kalaprasad G, Francis B, Thomas S et al (2004) Effect of fiber length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fiber reinforced low-density polyethylene composites. Polym Int 53:1624–1638

    Article  CAS  Google Scholar 

  115. Joseph PV (2001) Studies on short sisal fiber reinfored isotactic polypropylene composites. Thesis, Mahatma Gandhi University, Kerala

    Google Scholar 

  116. Fung KL, Xing XS, Li RKY (2003) An investigation on the processing of sisal fiber reinforced polypropylene composites. Compos Sci Technol 63:1255–1258

    Article  CAS  Google Scholar 

  117. Albano C, Gonzalez J, Ichazo M et al (1999) Thermal stability of blends of polyolefins and sisal fiber. Polym Degrad Stab 66:179–190

    Article  CAS  Google Scholar 

  118. Martin AR, Manolache S, Mattoso LHC et al (2000) Plasma modification of sisal and high-density polyethylene composite, effect on mechanical properties. In: Natural polymers and composites, pp 431–436

    Google Scholar 

  119. Rahman MM, Khan MA (2007) Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers physico-mechanical properties. Compos Sci Technol 67:2369–2376

    Article  CAS  Google Scholar 

  120. Ichazo MN, Albano C, Gonzalez J (2000) Behavior of polyolefin blends with acetylated sisal fibers. Polym Int 49:1409–1416

    Article  CAS  Google Scholar 

  121. Saxena M, Asokan P, Bakshi P (2008) Sisal potential for engineering application – an overview. In: Sisal fiber technologies for sustainable rural employment generation. Allied Publications, New Delhi, pp 112–154

    Google Scholar 

  122. Satyanarayana KG et al (1990a) Handbook of ceramic and composites. In: Cherimisin off NP (ed) Lignocellulosic fiber reinforced polymer composites, vol 1. Marcel Decker, New York, pp 339

    Google Scholar 

  123. Satyanarayana KG, Sukumaran K, Mukherjee PS et al (1990b) Natural fiber-polymer composites. Cement Concrete Compos 12:117–136

    Google Scholar 

  124. Sanadi AR, Prasad SV (1986) Sun hemp fiber reinforced polyester part-I. Analysis of tensile and impact properties. J Mater Sci 21:4299–4304

    Article  CAS  Google Scholar 

  125. Suddell BC (2002) A survey into the application of natural fiber composites in the automotive industry. In: Mattoso LHC, Leao A, Follini E (eds) Proceedings ISNaPol natural polymers and composites IV, Sao Paolo, Brazil, pp 1–7

    Google Scholar 

  126. Suddell BC (2003) The current situation and future outlook for natural fibers within the automotive industry, food and agriculture organization (FAO) of the United Nations Joint Meeting of the 32nd session of the Intergovernmental group on Hard Fibers and the 34th session of the Intergovernmental Group on Jute, kenaf and allied fibers. Salvador, Brazil.

    Google Scholar 

  127. Hughes M (2002) Sustainable composites-fact or fiction, oral presentation, composites processing composites processing association, Holiday Inn, Birmingham airport, 24 Jan 2002

    Google Scholar 

  128. Belmares H et al (1981) New composite materials from natural hard fibers. Ind Eng Chem Prod Res Dev 20:555

    Google Scholar 

  129. Swamy RN (ed) (1988) Natural fiber reinforced cement and concrete, vol 1. Concrete technology and design. Blackle, London

    Google Scholar 

  130. Gram H-E (1983) Durability of natural fibers in concrete. Swedish Research and Concrete Research Institute, Stockholm

    Google Scholar 

  131. Karus M, Gahle GC (2006) Use of natural fibers in composites for the German automotive production from 1999 till 2005. Slowed growth in the past two years new production techniques arising. Nova-Institut, Hürth

    Google Scholar 

  132. Taj S, Munawar MA, Khan SU (2007) Review: Natural fiber-reinforced polymer composites. Proc Pakistan Acad Sci 44(2):129–144

    Google Scholar 

  133. Brouwer WD (2002) Natural fiber composites where can flex compete with glass. SAMPE J 36:18–23

    Google Scholar 

  134. Rai A, Jha CN (2004) Natural fiber composites and its potential as building material. Express Textile, 25 Nov 2004

    Google Scholar 

  135. Sharma D (2004) India automotive components industry, Swiss Business Hub India, pp 1–20

    Google Scholar 

  136. Sink SE (2005) Specials reported cars made of plants. http://www.edmunds.com

  137. Bolton J (1997) Plant fibers in composite materials: a review of technical challenges and opportunities. The Burgess-Lane Memorial Lectureship in Forestry, March 5

    Google Scholar 

  138. Xin X, Xu CG, Qing LF (2007) Friction properties of sisal fiber reinforced resin brake composites. Wear 262:736–741

    Article  CAS  Google Scholar 

  139. Chand N, Joshi SK (1994) Temperature dependence of dielectric behaviour of sisal fiber. J Mater Sci Lett 13:156–158

    Article  CAS  Google Scholar 

  140. Patra A, Bisoyi DK (2010) Dielectric and impedance spectroscopy studies on sisal fiber –reinforced polyester composite. J Mater Sci 45(21):5742–5748

    Article  CAS  Google Scholar 

  141. Tudu P (2009) Processing and characterization of natural fiber reinforced polymer composites a thesis submitted in partial fulfillment of the requirements for the degree of bachelor of technology in mechanical Engineering. Department of mechanical engineering National institute of technology, Rourkela, India, pp 1–52

    Google Scholar 

  142. Shukla JP, Ram R, Peters E (2008) Scope of sisal based geotextile application. In: Sisal fiber technologies for sustainable rural employments generation. Allied Publication, New Delhi, pp 45–59

    Google Scholar 

  143. Oosthuizen D, Kruger D (1994) The use of Sisal Fiber as natural geotextile to control erosion. In: Rao GV, Balan K (eds) proceeding of the fifth international conference on geotextiles, geomembranes and related products, Singapore, coir geotextiles – emerging trends. The Kerala State Coir Corporation, Kerala, India

    Google Scholar 

  144. Lu X, Zhang MQ, Rong MZ et al (2004) Environmental degradability of self-reinforced composites made from sisal. Compos Sci Technol 64:1301–1310

    Article  CAS  Google Scholar 

  145. Osuna MS (2007) Projects and programmes, Unido, Vienna, Austria

    Google Scholar 

  146. Oudshoorn (1995) Biogas from sisal waste – a new opportunity for the sisal industry in Tanzania. Energy Sustain Dev 2(4):46–49

    Google Scholar 

  147. Rica C (2002) The sisal “zero” waste cleaner production programme in Tanzania study case. Common Fund for Commodities, pp 23–27

    Google Scholar 

  148. Albano C, Ichazo M, Reyes J et al (2002) Analysis of the mechanical, thermal and morphological behaviour of polypropylene compounds with sisal fiber and wood flour, irradiated with gamma rays. Polym Degrad Stab 76:191–203

    Article  CAS  Google Scholar 

  149. Belgacem MN, Bataille P, Sapieha S (1993) Effect of corona modification on the mechanical effect of corona modification on the mechanical properties of polypropylene/cellulose composites. J Appl Polym Sci 53:397

    Google Scholar 

  150. Gonzalez et al (1999) Effect of fibre surface treatment on the fibre matrix bond strength of natural fibre reinforced composites. Composites: Part B 30:309–320

    Google Scholar 

  151. Vibrant Gujarat (2004) Project proposals: global investors summit-2004. Government of Gujarat, India

    Google Scholar 

  152. Yi C, Tian L, Tong Y et al (2008) Thermal stability and mechanical properties of sisal in cycle process. J Thermal Anal Calorim 94(1):129–135

    Article  CAS  Google Scholar 

  153. AMPRI, home page, Accessed on 22/2/2010. http://en.wikipedia.org

  154. AMPRI, home page, Accessed on 22/2/2010. http://www.sisal.ws/specialapplication.html)

  155. AMPRI, home page, Accessed on 22/2/2010. http://www.tifac.org.in

Download references

Acknowledgment

The authors are thankful to Dr. Anil K. Gupta, Director, Advanced Materials and Processes Research Institute (AMPRI) Bhopal, Council of Scientific and Industrial Research (CSIR) India, for the guidance support and permission to publish this article. Authors are also thankful to members of SAPNA (Sisal Action Program for Novel Applications) group of AMPRI, Bhopal, India for necessary support. The contribution of Mr. Pavan K. Srivastava in the preparation of manuscript is thankfully acknowledged. Thanks to Mr. Dharam Raj and other staff of the Building Materials Development Group AMPRI, Bhopal for their valued contribution. The authors are grateful to BMTPC, MoEF and CSIR, New Delhi, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohini Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saxena, M., Pappu, A., Haque, R., Sharma, A. (2011). Sisal Fiber Based Polymer Composites and Their Applications. In: Kalia, S., Kaith, B., Kaur, I. (eds) Cellulose Fibers: Bio- and Nano-Polymer Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17370-7_22

Download citation

Publish with us

Policies and ethics