Skip to main content
Log in

A comparative study of the structural, optical and morphological properties of different types of Makrofol polycarbonate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, different types of Makrofol polycarbonate nuclear track detectors were used to offer specific strengths multi-talented accordingly to their properties to use it in a definite application. So, the structural, optical, and surface morphological properties were measured and identified by several techniques such as FTIR spectroscopy, UV–vis spectroscopy, Photoluminescence spectroscopy, roughness tester, SEM technique, and contact angle measurements. To differentiate their sensitivity to the radiation, the Makrofol types have been exposed to 300 kGy gamma-ray. The obtained results show that each kind of Makrofol film is characterized with distinct behaviors, which allows each kind to use in suitable important applications in different fields according to their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Young RJ, Lovell PA (1991) Introduction to polymers. Chapman and Hall, London

    Book  Google Scholar 

  2. Krache R, Debbah I (2011) Some mechanical and thermal properties of PC/ABS blends. Mater Sci Appl 2:404–410. https://doi.org/10.4236/msa.2011.25052

    Article  CAS  Google Scholar 

  3. Utracki LA (2002) Polymer blends handbook. Kluwer Academic Publishers, London

    Google Scholar 

  4. Pesetski SS, Filimonov OV, Koval VN, Golubovich VV (2009) Structural features and relaxation properties of PET/PC blends containing impact strength modifier and chain extender. Express Polym Lett 3:606–614. https://doi.org/10.3144/expresspolymlett.2009.76

    Article  CAS  Google Scholar 

  5. Vallecillo-Gómez SV, Tapia-Picazo JC, Bonilla-Petriciolet A, De-Alba-Pérez-de-Gracia GG (2011) 21st European symposium on computer aided process engineering. In: 21st European symposium on computer aided process engineering. pp 849–854

  6. Tayel A, Zaki MF, El Basaty AB, Hegazy TM (2015) Modifications induced by gamma irradiation to Makrofol polymer nuclear track detector. J Adv Res 6:219–224. https://doi.org/10.1016/J.JARE.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  7. Srivastava A, Singh TV, Mule S et al (2002) Study of chemical, optical and thermal modifications induced by 100 MeV silicon ions in a polycarbonate film. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 192:402–406. https://doi.org/10.1016/S0168-583X(02)00493-7

    Article  CAS  Google Scholar 

  8. Rammah YS, Ibrahim SE (2019) Awad EM (2019) Electrical and optical properties of Makrofol DE 1–1 polymeric films induced by gamma irradiation. Bull Natl Res Cent 431(43):1–10. https://doi.org/10.1186/S42269-019-0071-4

    Article  Google Scholar 

  9. Abdul-Kader AM, El-Gendy YA, Al-Rashdy AA (2012) Improve the physical and chemical properties of biocompatible polymer material by MeV He ion beam. Radiat Phys Chem 81:798–802. https://doi.org/10.1016/J.RADPHYSCHEM.2012.04.009

    Article  CAS  Google Scholar 

  10. Bielinski D, Lipinski P, Slusarski L et al (2004) Surface layer modification of ion bombarded HDPE. Surf Sci 564:179–186. https://doi.org/10.1016/J.SUSC.2004.06.196

    Article  CAS  Google Scholar 

  11. Siddhartha AS, Dev K et al (2012) Effect of gamma radiation on the structural and optical properties of Polyethyleneterephthalate (PET) polymer. Radiat Phys Chem 81:458–462. https://doi.org/10.1016/J.RADPHYSCHEM.2011.12.023

    Article  CAS  Google Scholar 

  12. Moez AA, Aly SS, Elshaer YH (2012) Effect of gamma radiation on low density polyethylene (LDPE) films: optical, dielectric and FTIR studies. Spectrochim Acta Part A Mol Biomol Spectrosc 93:203–207. https://doi.org/10.1016/J.SAA.2012.02.031

    Article  CAS  Google Scholar 

  13. Zaki MF (2008) Gamma-induced modification on optical band gap of CR-39 SSNTD. J Phys D Appl Phys 41:175404. https://doi.org/10.1590/S0103-97332008000500005

    Article  Google Scholar 

  14. Nouh SA, Benthami K (2018) Gamma induced changes in the structural and optical properties of Makrofol LS 1–1 polycarbonate. Radiat Eff Defects Solids 174:194–204. https://doi.org/10.1080/10420150.2018.1549551

    Article  CAS  Google Scholar 

  15. Abdul-Kader AM, Zaki MF, Radwan RM, Abuhadi N (2018) Influence of gamma irradiation on physical and chemical properties of Makrofol (NTD) material. Radiat Phys Chem 151:12–18. https://doi.org/10.1016/j.radphyschem.2018.05.010

    Article  CAS  Google Scholar 

  16. Zaki MF, Abdul-Kader AM, Nada A, El-Badry BA (2013) Surface modification of Makrofol-DE induced by α-particles. Philos Mag 93:4276–4285. https://doi.org/10.1080/14786435.2013.827339

    Article  CAS  Google Scholar 

  17. Singh S, Prasher S (2005) The optical, chemical and spectral response of gamma-irradiated Lexan polymeric track recorder. Radiat Meas 40:50–54. https://doi.org/10.1016/J.RADMEAS.2004.11.005

    Article  CAS  Google Scholar 

  18. Zaki MF, Ghaly WA, El-Bahkiry HS (2015) Photoluminescence, optical band gap and surface wettability of some polymeric track detectors modified by electron beam. Surf Coatings Technol 275:363–368. https://doi.org/10.1016/j.surfcoat.2015.04.041

    Article  CAS  Google Scholar 

  19. Negi A, Hariwal RV, Semwal A et al (2011) Opto-chemical response of Makrofol-KG to swift heavy ion irradiation. Indian Acad Sci 77:707–714. https://doi.org/10.1007/s12043-011-0134-z

    Article  CAS  Google Scholar 

  20. Mott NF, Davis EA (1971) Electronic processes in non-crystalline materials. Clarendon Press, Oxford University

    Google Scholar 

  21. Sharma T, Aggarwal S, Sharma A et al (2008) Modification of optical properties of polycarbonate by gamma irradiation. Radiat Eff Defects Solids 163:161–167. https://doi.org/10.1080/10420150701688503

    Article  CAS  Google Scholar 

  22. El-Badry BA, Zaki MF, Hegazy TM, Morsy AA (2008) An optical method for fast neutron dosimetry using CR-39. Radiat Eff Defects Solids 163:821–825. https://doi.org/10.1080/10420150701552717

    Article  CAS  Google Scholar 

  23. Ramanathan K, Annapoorni S, Malhotra BD (1994) Application of poly(aniline) as a glucose biosensor. Sens Actuat B Chem 21:165–169. https://doi.org/10.1016/0925-4005(94)01253-9

    Article  CAS  Google Scholar 

  24. Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699–766. https://doi.org/10.1016/J.PROGPOLYMSCI.2004.03.002

    Article  CAS  Google Scholar 

  25. El-Badry BA, Zaki MF, Abdul-Kader AM et al (2009) Ion bombardment of poly-Allyl-Diglycol-Carbonate (CR-39). Vacuum 83:1138–1142. https://doi.org/10.1016/J.VACUUM.2009.02.010

    Article  CAS  Google Scholar 

  26. Tauc J (1974) Amorphous and liquid semiconductors. Optical properties of amorphous semiconductors. Springer, Boston, MA, pp 159–220

    Google Scholar 

  27. Soliman TS, Vshivkov SA (2019) Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J Non Cryst Solids 519:119452. https://doi.org/10.1016/j.jnoncrysol.2019.05.028

    Article  CAS  Google Scholar 

  28. Abdul-Kader AM (2013) The optical band gap and surface free energy of polyethylene modified by electron beam irradiations. J Nucl Mater 435:231–235. https://doi.org/10.1016/J.JNUCMAT.2013.01.287

    Article  CAS  Google Scholar 

  29. Wooten F (1972) Optical properties of solids. Academic Press, New York and London

    Google Scholar 

  30. Fink D, Chung WH, Klett R et al (1995) Carbonaceous clusters in irradiated polymers as revealed by UV-Vis spectrometry. Radiat Eff Defects Solids 133:193–208. https://doi.org/10.1080/10420159508223990

    Article  CAS  Google Scholar 

  31. Gupta S, Choudhary D, Sarma A (2000) Study of carbonaceous clusters in irradiated polycarbonate with UV-vis spectroscopy. J Polym Sci B Polym Phys 38:1589–1594. https://doi.org/10.1002/(SICI)1099-0488(20000615)38:12

    Article  CAS  Google Scholar 

  32. Soliman TS, Vshivkov SA, Elkalashy SI (2020) Structural, thermal, and linear optical properties of SiO2 nanoparticles dispersed in polyvinyl alcohol nanocomposite films. Polym Compos 41:3340–3350. https://doi.org/10.1002/pc.25623

    Article  CAS  Google Scholar 

  33. Soliman TS, Vshivkov SA, Elkalashy SI (2020) Structural, linear and nonlinear optical properties of Ni nanoparticles—Polyvinyl alcohol nanocomposite films for optoelectronic applications. Opt Mater (Amst) 107:110037. https://doi.org/10.1016/j.optmat.2020.110037

    Article  CAS  Google Scholar 

  34. Zaki MF, Elmaghraby EK (2012) Photoluminescence of gamma-radiation induced defect on poly allyl diglycol carbonates. J Lumin 132:119–121. https://doi.org/10.1016/j.jlumin.2011.08.001

    Article  CAS  Google Scholar 

  35. Kumar V, Sonkawade RG, Dhaliwal AS (2012) Gamma irradiation induced chemical and structural modifications in PM-355 polymeric nuclear track detector film. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 290:59–63. https://doi.org/10.1016/J.NIMB.2012.08.029

    Article  CAS  Google Scholar 

  36. Tóth S, Füle M, Veres M et al (2006) Photoluminescence of ultra-high molecular weight polyethylene modified by fast atom bombardment. Thin Solid Films 497:279–283. https://doi.org/10.1016/J.TSF.2005.10.050

    Article  Google Scholar 

  37. Zaki MF (2016) He–Ne laser induced changes to CN-85 polymer track detector. J King Saud Univ Sci 28:339–346. https://doi.org/10.1016/J.JKSUS.2015.05.008

    Article  Google Scholar 

  38. Ali ZI, Abdul-Kader AM, Rizk RAM, Ali M (2013) Tailoring surface properties of polymeric blend material by ion beam bombardment. Radiat Phys Chem 91:120–124. https://doi.org/10.1016/J.RADPHYSCHEM.2013.06.001

    Article  CAS  Google Scholar 

  39. Turos A, Abdul-Kader AM, Grambole D et al (2006) The effects of ion bombardment of ultra-high molecular weight polyethylene. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 249:660–664. https://doi.org/10.1016/J.NIMB.2006.03.075

    Article  CAS  Google Scholar 

  40. Mirzadeh H, Bagheri S (2007) Comparison of the effect of excimer laser irradiation and RF plasma treatment on polystyrene surface. Radiat Phys Chem 76:1435–1440. https://doi.org/10.1016/J.RADPHYSCHEM.2007.02.079

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Soliman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, M.F., Elkalashy, S.I. & Soliman, T.S. A comparative study of the structural, optical and morphological properties of different types of Makrofol polycarbonate. Polym. Bull. 79, 10841–10863 (2022). https://doi.org/10.1007/s00289-021-04011-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-04011-2

Keywords

Navigation