Skip to main content
Log in

Recent developments in waterborne polyurethane dispersions (WPUDs): a mini-review on thermal and mechanical properties improvement

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Waterborne polyurethane dispersions used in surface coatings have recently gained a lot of interest as the need for more and more alternatives in the case of chemical components has arisen. Nevertheless, WPUDs can be used to obtain coatings with superior qualities. Hence, a study of various research papers, articles, and other literature is being presented in the following review article. We have studied various aspects of improvement and advancement in the field of WPUDs. We have focused mainly on thermal and mechanical property elevation brought about by physical and chemical modifications. We have also described raw materials and the basic chemistry of WPUDs taking into consideration how properties can be achieved by alterations in these two aspects as well.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

1,4-BDO:

1, 4-Butanediol

AAS Salt:

2-((2-Aminoethyl)amino)ethanesulfonic acid

AAS-Na:

Aliphatic diamine sulfonate

APTES:

3-Aminopropyltriethoxysilane

APTMS:

(3-Aminopropyl)trimethoxysilane

AT:

Attapulgite

BN:

Boron nitride

BP:

Black phosphorene

CASE:

Coatings, adhesives, sealants and elastomers

CB:

Carbon black

CS:

Chitosan

DABCO:

1, 4-Diazabicyclo[2.2.2]octane

DBTDL:

Di-butyl tin dilaurate

D-GO:

Dopamine-coated filler

DMA:

Dynamic mechanical analysis

DMCHA:

Dimethyl cyclohexylamine

DMEA:

Dimethylethanolamine

DMPA:

Dimethylolpropionic acid

DOL:

Dolomite

DSC:

Differential scanning calorimetry

E10-H:

Dialcohol-terminated perfluoropolyether

EDA:

Ethylenediamine

ETMS:

Methyltriethoxysilane

FE-SEM:

Field emission scanning electron microscope

Fyrol-6:

Diethylbis(2-hydroxyethyl)aminomethylphosphonate

GA-g-OCS:

Gallic acid-grafted OCS

GO:

Graphene oxide

Gr:

Graphene

HEA:

2-Hydroxyethyl acrylate

HEDS:

2-Hydroxyethyl disulfide

HPDMS:

Hydroxypropyl-terminated polydimethoxysilane

HS:

Hard segments

HT:

Halloysite nanotubes

IPDI:

Isophorone diisocyanate

MACO:

Carboxyl castor oil

MAWPU:

Two-component WPU with M12A4 as crosslinking agent

MMT:

Montmorillonite

MPA:

3-Mercaptopropionic acid

MPTS:

3-Mercaptopropyl trimethoxysilane

MSCO:

Alkoxysilane castor oil

MWPU:

Two-component WPU with MHP15 as crosslinking agent

NMR:

Nuclear magnetic resonance

OCS:

Oligochitosan

OMt:

Organically modified montmorillonite

OP550:

Halogen-free polyphosphate

PA-g-OCS:

Protocatechuic acid-grafted OCS

PAL:

Palygorskite

PCZ:

PVA-anchored functionalized CB-modified ZnO

PDMS:

Polydimethoxysilane

PDNP:

Di-N-hydroxyethyl phosphamide

PESI:

Polysiloxane diols

PGZ:

PVA-anchored GO-modified ZnO

PNMPD:

2-(5,5-Dimethyl-2-oxo-2–1,3,2-dioxaphosphinan-2-ylamino)-2-methyl-propane-1,3-diol

PNWPU:

Phosphorus–nitrogen-containing waterborne polyurethane

PPG:

Polypropylene glycol

PTMG:

Polytetrahydrofuran polyether diols

PU:

Polyurethane

PUD:

Polyurethane dispersion

PUNC:

Polyurethane nanocomposites

PUSD:

Polyurethane–silicone dispersion

PVA:

Polyvinyl alcohol

RIM:

Reaction injection molding

SiWPU:

Silicon-based waterborne polyurethane

SPD:

Sulfonate polyester diol

SPR:

Organically modified commercial clay

SPUD:

Solvent-based polyurethane dispersions

SPUDs:

Silane-terminated polyurethane dispersions

SS:

Soft segments

SSMMP:

Silico-metallic mineral particles

TEA:

Triethanolamine

TEDA:

Triethylenediamine

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

TMP:

1,1,1-Tris(hydroxymethyl)propane

TNAP:

Tri (N,N-bis-(2-hydroxy-ethyl) acyloxoethyl) phosphate

TPU:

Thermoplastic polyurethane

VOC:

Volatile organic compounds

WPU:

Waterborne polyurethane

WPUD:

Waterborne polyurethane dispersion

WPU/SHT, WPU/SAT:

WPU/clay nanocomposites

WPUU-PCD:

Waterborne polyurethane urea dispersions made with polycarbonate diol

References

  1. Bayer O (1947) Polyurethane paper von bayer. Angew Chemie 59:257–288. https://doi.org/10.1002/ange.19470590901

    Article  Google Scholar 

  2. Ding H, Xia C, Wang J (2016) Inherently flame-retardant flexible bio-based polyurethane sealant with phosphorus and nitrogen-containing polyurethane prepolymer. J Mater Sci 51:5008–5018. https://doi.org/10.1007/s10853-016-9805-y

    Article  CAS  Google Scholar 

  3. Yang WJ, Lee GY, Park SH (2019) Analysis on chemical and physical behaviors of polyurethane foam for prediction of deformation of refrigerator panels. Int J Precis Eng Manuf 20:2041–2049. https://doi.org/10.1007/s12541-019-00159-0

    Article  Google Scholar 

  4. Scarfato P, Di Maio L, Incarnato L (2017) Structure and physical-mechanical properties related to comfort of flexible polyurethane foams for mattress and effects of artificial weathering. Compos Part B Eng 109:45–52. https://doi.org/10.1016/j.compositesb.2016.10.041

    Article  CAS  Google Scholar 

  5. Gnanasundaram S, Kannan S, Ranganathan M (2015) Preparation and characterization of footwear soling materials based on biodegradable polyurethane. Polym Plast Technol Eng 54:1585–1595. https://doi.org/10.1080/03602559.2015.1036443

    Article  CAS  Google Scholar 

  6. Zain NM, Roslin EN, Ahmad S (2016) Preliminary study on bio-based polyurethane adhesive/aluminum laminated composites for automotive applications. Int J Adhes Adhes 71:1–9. https://doi.org/10.1016/j.ijadhadh.2016.08.001

    Article  CAS  Google Scholar 

  7. Fridrihsone-Girone A, Stirna U, Misane M (2016) Spray-applied 100% volatile organic compounds free two component polyurethane coatings based on rapeseed oil polyols. Prog Org Coatings 94:90–97. https://doi.org/10.1016/j.porgcoat.2015.11.022

    Article  CAS  Google Scholar 

  8. Turkenburg DH, van Bracht H, Funke B (2017) Polyurethane adhesives containing Diels–Alder-based thermoreversible bonds. J Appl Polym Sci 134:1–11. https://doi.org/10.1002/app.44972

    Article  CAS  Google Scholar 

  9. Bernardini J, Cinelli P, Anguillesi I (2015) Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur Polym J 64:147–156. https://doi.org/10.1016/j.eurpolymj.2014.11.039

    Article  CAS  Google Scholar 

  10. Zieleniewska M, Leszczyński MK, Kurańska M (2015) Preparation and characterisation of rigid polyurethane foams using a rapeseed oil-based polyol. Ind Crops Prod 74:887–897. https://doi.org/10.1016/j.indcrop.2015.05.081

    Article  CAS  Google Scholar 

  11. Ding H, Wang J, Wang C, Chu F (2016) Synthesis of a novel phosphorus and nitrogen-containing bio-based polyols and its application in flame retardant polyurethane sealant. Polym Degrad Stab 124:43–50. https://doi.org/10.1016/j.polymdegradstab.2015.12.006

    Article  CAS  Google Scholar 

  12. Sobczak M (2015) Biodegradable polyurethane elastomers for biomedical applications—Synthesis methods and properties. Polym Plast Technol Eng 54:155–172. https://doi.org/10.1080/03602559.2014.955201

    Article  CAS  Google Scholar 

  13. Liu H, Huang W, Yang X (2016) Organic vapor sensing behaviors of conductive thermoplastic polyurethane-graphene nanocomposites. J Mater Chem C 4:4459–4469. https://doi.org/10.1039/c6tc00987e

    Article  CAS  Google Scholar 

  14. Tröltzsch J, Schäfer K, Niedziela D (2017) Simulation of RIM-process for polyurethane foam expansion in fiber reinforced sandwich structures. Procedia CIRP 66:62–67. https://doi.org/10.1016/j.procir.2017.03.285

    Article  Google Scholar 

  15. Lei L, Xia Z, Ou C (2015) Effects of crosslinking on adhesion behavior of waterborne polyurethane ink binder. Prog Org Coatings 88:155–163. https://doi.org/10.1016/j.porgcoat.2015.07.002

    Article  CAS  Google Scholar 

  16. Jiménez-Pardo I, Sun P, van Benthem RATM, Esteves ACC (2018) Design of self-dispersible charged-polymer building blocks for waterborne polyurethane dispersions. Eur Polym J 101:324–331. https://doi.org/10.1016/j.eurpolymj.2018.02.026

    Article  CAS  Google Scholar 

  17. Yong Q, Nian F, Liao B (2015) Synthesis and characterization of solvent-free waterborne polyurethane dispersion with both sulfonic and carboxylic hydrophilic chain-extending agents for matt coating applications. RSC Adv 5:107413–107420. https://doi.org/10.1039/c5ra21471h

    Article  CAS  Google Scholar 

  18. Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos Environ 140:117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031

    Article  CAS  Google Scholar 

  19. Saalah S, Abdullah LC, Aung MM (2015) Waterborne polyurethane dispersions synthesized from jatropha oil. Ind Crops Prod 64:194–200. https://doi.org/10.1016/j.indcrop.2014.10.046

    Article  CAS  Google Scholar 

  20. Fan W, Du W, Li Z (2015) Abrasion resistance of waterborne polyurethane films incorporated with PU/silica hybrids. Prog Org Coatings 86:125–133. https://doi.org/10.1016/j.porgcoat.2015.04.022

    Article  CAS  Google Scholar 

  21. Honarkar H, Barmar M, Barikani M (2016) New sulfonated waterborne polyurethane dispersions: preparation and characterization. J Dispers Sci Technol 37:1219–1225. https://doi.org/10.1080/01932691.2015.1028071

    Article  CAS  Google Scholar 

  22. Lei L, Xia Z, Lin X (2015) Synthesis and adhesion properties of waterborne polyurethane dispersions with long-branched aliphatic chains. J Appl Polym Sci 132:1–8. https://doi.org/10.1002/app.41688

    Article  CAS  Google Scholar 

  23. Zhou X, Fang C, Yu Q (2017) Synthesis and characterization of waterborne polyurethane dispersion from glycolyzed products of waste polyethylene terephthalate used as soft and hard segment. Int J Adhes Adhes 74:49–56. https://doi.org/10.1016/j.ijadhadh.2016.12.010

    Article  CAS  Google Scholar 

  24. Lokhande GP, Chambhare SU, Jagtap RN (2017) Anionic water-based polyurethane dispersions for antimicrobial coating application. Polym Bull 74:4781–4798. https://doi.org/10.1007/s00289-017-1965-7

    Article  CAS  Google Scholar 

  25. Patel R, Kapatel P (2018) Waterborne polyurethanes: a three step synthetic approach towards environmental friendly flame retardant coatings. Prog Org Coatings 125:186–194. https://doi.org/10.1016/j.porgcoat.2018.09.010

    Article  CAS  Google Scholar 

  26. Cai K, Zuo S, Luo S (2016) Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv 6:95965–95972. https://doi.org/10.1039/c6ra19618g

    Article  CAS  Google Scholar 

  27. Mirmohseni A, Akbari M, Najjar R, Hosseini M (2019) Self-healing waterborne polyurethane coating by pH-dependent triggered-release mechanism. J Appl Polym Sci 136:1–12. https://doi.org/10.1002/app.47082

    Article  CAS  Google Scholar 

  28. Boutar Y, Naïmi S, Mezlini S (2018) Fatigue resistance of an aluminium one-component polyurethane adhesive joint for the automotive industry: effect of surface roughness and adhesive thickness. Int J Adhes Adhes 83:143–152. https://doi.org/10.1016/j.ijadhadh.2018.02.012

    Article  CAS  Google Scholar 

  29. Cristofolini L, Guidetti G, Morellato K (2018) Graphene materials strengthen aqueous polyurethane adhesives. ACS Omega 3:8829–8835. https://doi.org/10.1021/acsomega.8b01342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shin EJ, Choi SM (2018) Advances in waterborne polyurethane-based biomaterials for biomedical applications. Adv Exp Med Biol 1077:251–283. https://doi.org/10.1007/978-981-13-0947-2_14

    Article  CAS  PubMed  Google Scholar 

  31. Saeedi S, Omrani I, Bafkary R (2019) Facile preparation of biodegradable dual stimuli-responsive micelles from waterborne polyurethane for efficient intracellular drug delivery. New J Chem 43:18534–18545. https://doi.org/10.1039/C9NJ03773J

    Article  CAS  Google Scholar 

  32. Rodrigues JME, Pereira MR, De SAG (2005) DSC monitoring of the cure kinetics of a castor oil-based polyurethane. Thermochimica Acta 427:31–36. https://doi.org/10.1016/j.tca.2004.08.010

    Article  CAS  Google Scholar 

  33. Monteiro EEC, Fonseca JLC (1997) Phase segregation and viscoelastic behavior of poly (ether urethane urea) s. J Appl Polym Sci 65(11):2227–2236

    Article  CAS  Google Scholar 

  34. Characterisation P (1999) Stress relaxation of thermoplastic polyurethanes monitored by FTIR spectroscopy. Polymer testing 18:281–286

    Article  Google Scholar 

  35. De VCL, Martins RR, Ferreira MO, Fonseca JLC (2002) Rheology of polyurethane solutions with different solvents. Polymer international 74:69–74. https://doi.org/10.1002/pi.800

    Article  CAS  Google Scholar 

  36. Bullermann J, Friebel S, Salthammer T, Spohnholz R (2013) Novel polyurethane dispersions based on renewable raw materials—Stability studies by variations of DMPA content and degree of neutralisation. Prog Org Coatings 76:609–615. https://doi.org/10.1016/j.porgcoat.2012.11.011

    Article  CAS  Google Scholar 

  37. Altuna FI, Ruseckaite RA, Stefani PM (2015) Biobased thermosetting epoxy foams: mechanical and thermal characterization. ACS Sustain Chem Eng 3:1406–1411. https://doi.org/10.1021/acssuschemeng.5b00114

    Article  CAS  Google Scholar 

  38. Lligadas G, Ronda JC, Galiá M, Cádiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromol 11:2825–2835. https://doi.org/10.1021/bm100839x

    Article  CAS  Google Scholar 

  39. Hu S, Luo X, Li Y (2015) Production of polyols and waterborne polyurethane dispersions from biodiesel-derived crude glycerol. J Appl Polym Sci 132:1–8. https://doi.org/10.1002/app.41425

    Article  CAS  Google Scholar 

  40. Lu Y, Larock RC (2008) Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties. Biomacromol 9:3332–3340. https://doi.org/10.1021/bm801030g

    Article  CAS  Google Scholar 

  41. Shah MY, Ahmad S (2012) Waterborne vegetable oil epoxy coatings: preparation and characterization. Prog Org Coatings 75:248–252. https://doi.org/10.1016/j.porgcoat.2012.05.001

    Article  CAS  Google Scholar 

  42. Guo Y, Hardesty JH, Mannari VM, Massingill JL (2007) Hydrolysis of epoxidized soybean oil in the presence of phosphoric acid. J Am Oil Chem Soc 84:929–935. https://doi.org/10.1007/s11746-007-1126-5

    Article  CAS  Google Scholar 

  43. Man L, Feng Y, Hu Y (2019) A renewable and multifunctional eco-friendly coating from novel tung oil-based cationic waterborne polyurethane dispersions. J Clean Prod 241:118341. https://doi.org/10.1016/j.jclepro.2019.118341

    Article  CAS  Google Scholar 

  44. Huang K, Liu Z, Zhang J (2014) Epoxy monomers derived from tung oil fatty acids and its regulable thermosets cured in two synergistic ways. Biomacromol 15:837–843. https://doi.org/10.1021/bm4018929

    Article  CAS  Google Scholar 

  45. Gaddam SK, Raju Kutcherlapati SN, Palanisamy A (2017) Self-cross-linkable anionic waterborne polyurethane-silanol dispersions from cottonseed-oil-based phosphorylated polyol as ionic soft segment. ACS Sustain Chem Eng 5:6447–6455. https://doi.org/10.1021/acssuschemeng.7b00327

    Article  CAS  Google Scholar 

  46. Tielemans M, Roose P, De Groote P, Vanovervelt JC (2006) Colloidal stability of surfactant-free radiation curable polyurethane dispersions. Prog Org Coatings 55:128–136. https://doi.org/10.1016/j.porgcoat.2005.08.010

    Article  CAS  Google Scholar 

  47. Asif A, Shi W, Shen X, Nie K (2005) Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number. Polymer 46:11066–11078. https://doi.org/10.1016/j.polymer.2005.09.046

    Article  CAS  Google Scholar 

  48. Bai CY, Zhang XY, Dai JB, Zhang CY (2007) Water resistance of the membranes for UV curable waterborne polyurethane dispersions. Prog Org Coatings 59:331–336. https://doi.org/10.1016/j.porgcoat.2007.05.003

    Article  CAS  Google Scholar 

  49. Panda SS, Panda BP, Nayak SK, Mohanty S (2018) A review on waterborne thermosetting polyurethane coatings based on castor oil: synthesis, characterization, and application. Polym Plast Technol Eng 57:500–522. https://doi.org/10.1080/03602559.2016.1275681

    Article  CAS  Google Scholar 

  50. Lu Y, Larock RC (2010) Soybean oil-based, aqueous cationic polyurethane dispersions: synthesis and properties. Prog Org Coatings 69:31–37. https://doi.org/10.1016/j.porgcoat.2010.04.024

    Article  CAS  Google Scholar 

  51. Zhang X (2015) Thesis: Hybrid Eco-LCA of emerging cellulosic ethanol systems and crude glycerin based polyols. The Ohio State University

    Google Scholar 

  52. Hu S (2013) Thesis: Production and characterization of bio-based polyols and polyurethanes from biodiesel-derived crude glycerol and lignocellulosic biomass. The Ohio State University

    Google Scholar 

  53. Wu GM, Kong ZW, Chen J (2014) Preparation and properties of waterborne polyurethane/epoxy resin composite coating from anionic terpene-based polyol dispersion. Prog Org Coatings 77:315–321. https://doi.org/10.1016/j.porgcoat.2013.10.005

    Article  CAS  Google Scholar 

  54. Madbouly SA, Xia Y, Kessler MR (2013) Rheological behavior of environmentally friendly castor oil-based waterborne polyurethane dispersions. Macromolecules 46:4606–4616. https://doi.org/10.1021/ma400200y

    Article  CAS  Google Scholar 

  55. Liu K, Miao S, Su Z (2016) Castor oil-based waterborne polyurethanes with tunable properties and excellent biocompatibility. Eur J Lipid Sci Technol 118:1512–1520. https://doi.org/10.1002/ejlt.201500595

    Article  CAS  Google Scholar 

  56. Wei X, Ying Y, Yu X (1998) A novel synthetic strategy to aromatic-diisocyanate-based waterborne polyurethanes. J Appl Polym Sci 70:1621–1626. https://doi.org/10.1002/(SICI)1097-4628(19981121)70:8%3c1621::AID-APP20%3e3.0.CO;2-O

    Article  CAS  Google Scholar 

  57. Cornille A, Auvergne R, Figovsky O (2017) A perspective approach to sustainable routes for non-isocyanate polyurethanes. Eur Polym J 87:535–552. https://doi.org/10.1016/j.eurpolymj.2016.11.027

    Article  CAS  Google Scholar 

  58. Wang Y, Zhao X, Li F (2001) Catalytic synthesis of toluene-2,4-diisocyanate from dimethyl carbonate. J Chem Technol Biotechnol 76:857–861. https://doi.org/10.1002/jctb.455

    Article  CAS  Google Scholar 

  59. Brocas A-L, Cendejas G, Caillol S (2011) Controlled synthesis of polyepichlorohydrin with pendant cyclic carbonate functions for isocyanate-free polyurethane networks. J Polym Sci A Polym Chem. https://doi.org/10.1002/pola.24699

    Article  Google Scholar 

  60. Yilgor I, Yilgor E, Guler IG (2006) FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 47:4105–4114. https://doi.org/10.1016/j.polymer.2006.02.027

    Article  CAS  Google Scholar 

  61. Schmitz J, Frommelius H, Pegelow U (1999) New concept for dispersing agents in aqueous coatings. Prog Org Coatings 35:191–196. https://doi.org/10.1016/S0300-9440(99)00028-4

    Article  CAS  Google Scholar 

  62. Aznar AC, Pardini OR, Amalvy JI (2006) Glossy topcoat exterior paint formulations using water-based polyurethane/acrylic hybrid binders. Prog Org Coatings 55:43–49. https://doi.org/10.1016/j.porgcoat.2005.11.001

    Article  CAS  Google Scholar 

  63. Scrinzi E, Rossi S, Deflorian F, Zanella C (2011) Progress in organic coatings evaluation of aesthetic durability of waterborne polyurethane coatings applied on wood for interior applications. Prog Org Coatings 72:81–87. https://doi.org/10.1016/j.porgcoat.2011.03.013

    Article  CAS  Google Scholar 

  64. Heilen W (2009) Additives for waterborne coatings. European Coating Tech Files, Vincentz, Evonik Industries. ISBN 978-3-86630-850-3

    Google Scholar 

  65. Janvier M, Ducrot PH, Allais F (2017) Isocyanate-free synthesis and characterization of renewable poly(hydroxy)urethanes from syringaresinol. ACS Sustain Chem Eng 5:8648–8656. https://doi.org/10.1021/acssuschemeng.7b01271

    Article  CAS  Google Scholar 

  66. Subramani S, Park YJ, Lee YS, Kim JH (2003) New development of polyurethane dispersion derived from blocked aromatic diisocyanate. Prog Org Coatings 48:71–79. https://doi.org/10.1016/S0300-9440(03)00118-8

    Article  CAS  Google Scholar 

  67. Sheth JP, Klinedinst DB, Pechar TW (2005) Time-dependent morphology development in a segmented polyurethane with monodisperse hard segments based on 1,4-phenylene diisocyanate. Macromolecules 38:10074–10079. https://doi.org/10.1021/ma051063a

    Article  CAS  Google Scholar 

  68. Honarkar H, Barmar M, Barikani M (2015) Synthesis, characterization and properties of waterborne polyurethanes based on two different ionic centers. Fibers Polym 16:718–725. https://doi.org/10.1007/s12221-015-0718-1

    Article  CAS  Google Scholar 

  69. Sukhawipat N, Saetung N, Pilard JF (2018) Synthesis and characterization of novel natural rubber based cationic waterborne polyurethane: effect of emulsifier and diol class chain extender. J Appl Polym Sci 135:17–19. https://doi.org/10.1002/app.45715

    Article  CAS  Google Scholar 

  70. Fu C, Zheng Z, Yang Z (2014) A fully bio-based waterborne polyurethane dispersion from vegetable oils: From synthesis of precursors by thiol-ene reaction to study of final material. Prog Org Coatings 77:53–60. https://doi.org/10.1016/j.porgcoat.2013.08.002

    Article  CAS  Google Scholar 

  71. Kosheeladevi PP, Tuan Noor Maznee TI, Hoong SS (2016) Performance of palm oil-based dihydroxystearic acid as ionizable molecule in waterborne polyurethane dispersions. J Appl Polym Sci 133:1–10. https://doi.org/10.1002/app.43614

    Article  CAS  Google Scholar 

  72. Liang H, Wang S, He H (2018) Aqueous anionic polyurethane dispersions from castor oil. Ind Crops Prod 122:182–189. https://doi.org/10.1016/j.indcrop.2018.05.079

    Article  CAS  Google Scholar 

  73. Xia Y, Larock RC (2011) Castor-oil-based waterborne polyurethane dispersions cured with an aziridine-based crosslinker. Macromol Mater Eng 296:703–709. https://doi.org/10.1002/mame.201000431

    Article  CAS  Google Scholar 

  74. Shendi HK, Omrani I, Ahmadi A (2017) Synthesis and characterization of a novel internal emulsifier derived from sunflower oil for the preparation of waterborne polyurethane and their application in coatings. Prog Org Coatings 105:303–309. https://doi.org/10.1016/j.porgcoat.2016.11.033

    Article  CAS  Google Scholar 

  75. Liu L, Lu J, Zhang Y (2019) Thermosetting polyurethanes prepared with the aid of a fully bio-based emulsifier with high bio-content, high solid content, and superior mechanical properties. Green Chem 21:526–537. https://doi.org/10.1039/c8gc03560a

    Article  CAS  Google Scholar 

  76. Zhu Z, Li R, Zhang C, Gong S (2018) Preparation and properties of high solid content and low viscositywaterborne polyurethane-acrylate emulsion with a reactive emulsifier. Polymers. https://doi.org/10.3390/polym10020154

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bao LH, Lan YJ, Zhang SF (2006) Synthesis and properties of waterborne polyurethane dispersions with ions in the soft segments. J Polym Res 13:507–514. https://doi.org/10.1007/s10965-006-9073-7

    Article  CAS  Google Scholar 

  78. Li J, Zhang X, Gooch J (2015) Photo- and pH-sensitive azo-containing cationic waterborne polyurethane. Polym Bull 72:881–895. https://doi.org/10.1007/s00289-015-1312-9

    Article  CAS  Google Scholar 

  79. Noble KL (1997) Waterborne polyurethanes. Prog Org Coatings 32:131–136. https://doi.org/10.1016/S0300-9440(97)00071-4

    Article  CAS  Google Scholar 

  80. Lee YM, Lee JC, Kim BK (1994) Effect of soft segment length on the properties of polyurethane anionomer dispersion. Polymer 35:1095–1099. https://doi.org/10.1016/0032-3861(94)90958-X

    Article  CAS  Google Scholar 

  81. Wu J, Chen D (2016) Synthesis and characterization of waterborne polyurethane based on covalently bound dimethylol propionic acid to e-caprolactone based polyester polyol. Prog Org Coatings 97:203–209. https://doi.org/10.1016/j.porgcoat.2016.04.033

    Article  CAS  Google Scholar 

  82. Tatai L, Moore TG, Adhikari R (2007) Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation. Biomaterials 28:5407–5417. https://doi.org/10.1016/j.biomaterials.2007.08.035

    Article  CAS  PubMed  Google Scholar 

  83. Chandra S, Karak N (2018) Environmentally friendly polyurethane dispersion derived from dimer acid and citric acid. ACS Sustain Chem Eng 6:16412–16423. https://doi.org/10.1021/acssuschemeng.8b03474

    Article  CAS  Google Scholar 

  84. Wazarkar K, Kathalewar M, Sabnis A (2015) Improvement in flame retardancy of polyurethane dispersions by newer reactive flame retardant. Prog Org Coatings 87:75–82. https://doi.org/10.1016/j.porgcoat.2015.05.016

    Article  CAS  Google Scholar 

  85. Wang S, Du Z, Cheng X (2018) Synthesis of a phosphorus- and nitrogen-containing flame retardant and evaluation of its application in waterborne polyurethane. J Appl Polym Sci 135:1–10. https://doi.org/10.1002/app.46093

    Article  CAS  Google Scholar 

  86. Yue S, Zhang Z, Fan X (2015) Effect of 3-aminopropyltriethoxysilane on solvent resistance, thermal stability, and mechanical properties of two-component waterborne polyurethane. Int J Polym Anal Charact 20:285–297. https://doi.org/10.1080/1023666X.2015.1015931

    Article  CAS  Google Scholar 

  87. Zhang Y, Shao L, Dong D, Wang Y (2016) Enhancement of water and organic solvent resistances of a waterborne polyurethane film by incorporating liquid polysulfide. RSC Adv 6:17163–17171. https://doi.org/10.1039/c5ra24574e

    Article  CAS  Google Scholar 

  88. Javaid MA, Khera RA, Zia KM (2018) Synthesis and characterization of chitosan modified polyurethane bio-nanocomposites with biomedical potential. Int J Biol Macromol 115:375–384. https://doi.org/10.1016/j.ijbiomac.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  89. Wei X, Zhang F (2018) Preparation of an ionic/nonionic polyurethane-silicone dispersion (PUSD) with a high solid content and low viscosity using complex soft segments. J Coatings Technol Res 15:1229–1237. https://doi.org/10.1007/s11998-018-0063-6

    Article  CAS  Google Scholar 

  90. Zhang Y, Lin R, Shi Y (2019) Synthesis and surface migration of polydimethylsiloxane and perfluorinated polyether in modified waterborne polyurethane. Polym Bull 76:5517–5535. https://doi.org/10.1007/s00289-018-2666-6

    Article  CAS  Google Scholar 

  91. Wu G, Liu D, Chen J (2019) Preparation and properties of super hydrophobic films from siloxane-modified two-component waterborne polyurethane and hydrophobic nano SiO2. Prog Org Coatings 127:80–87. https://doi.org/10.1016/j.porgcoat.2018.06.016

    Article  CAS  Google Scholar 

  92. Zhang S, Chen Z, Guo M (2015) Synthesis and characterization of waterborne UV-curable polyurethane modified with side-chain triethoxysilane and colloidal silica. Coll Surfaces A Physicochem Eng Asp 468:1–9. https://doi.org/10.1016/j.colsurfa.2014.12.004

    Article  CAS  Google Scholar 

  93. Ma H, Liu Y, Guo J (2020) Synthesis of a novel silica modified environmentally friendly waterborne polyurethane matting coating. Prog Org Coatings. https://doi.org/10.1016/j.porgcoat.2019.105441

    Article  Google Scholar 

  94. Fu C, Hu X, Yang Z (2015) Preparation and properties of waterborne bio-based polyurethane/siloxane cross-linked films by an in situ sol-gel process. Prog Org Coatings 84:18–27. https://doi.org/10.1016/j.porgcoat.2015.02.008

    Article  CAS  Google Scholar 

  95. Cheng Z, Li Q, Yan Z (2019) Design and synthesis of novel aminosiloxane crosslinked linseed oil-based waterborne polyurethane composites and its physicochemical properties. Prog Org Coatings 127:194–201. https://doi.org/10.1016/j.porgcoat.2018.11.020

    Article  CAS  Google Scholar 

  96. Wang S, Du X, Jiang Y (2019) Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus–nitrogen flame retardant. J Coll Interface Sci 537:197–205. https://doi.org/10.1016/j.jcis.2018.11.003

    Article  CAS  Google Scholar 

  97. Zhang P, Zhang Z, Fan H (2016) Waterborne polyurethane conjugated with novel diol chain-extender bearing cyclic phosphoramidate lateral group: synthesis, flammability and thermal degradation mechanism. RSC Adv 6:56610–56622. https://doi.org/10.1039/c6ra06856a

    Article  CAS  Google Scholar 

  98. Wu L, Guo J, Zhao S (2017) Flame-retardant and crosslinking modification of MDI-based waterborne polyurethane. Polym Bull 74:2099–2116. https://doi.org/10.1007/s00289-016-1826-9

    Article  CAS  Google Scholar 

  99. Yin X, Luo Y, Zhang J (2017) Synthesis and characterization of halogen-free flame retardant two-component waterborne polyurethane by different modification. Ind Eng Chem Res 56:1791–1802. https://doi.org/10.1021/acs.iecr.6b04452

    Article  CAS  Google Scholar 

  100. Wan T, Chen D (2017) Synthesis and properties of self-healing waterborne polyurethanes containing disulfide bonds in the main chain. J Mater Sci 52:197–207. https://doi.org/10.1007/s10853-016-0321-x

    Article  CAS  Google Scholar 

  101. Yin X, Dong C, Luo Y (2017) Effects of hydrophilic groups of curing agents on the properties of flame-retardant two-component waterborne coatings. Coll Polym Sci 295:2423–2431. https://doi.org/10.1007/s00396-017-4218-2

    Article  CAS  Google Scholar 

  102. Dai M, Wang J, Zhang Y (2020) Improving water resistance of waterborne polyurethane coating with high transparency and good mechanical properties. Coll Surfaces A Physicochem Eng Asp 601:124994. https://doi.org/10.1016/j.colsurfa.2020.124994

    Article  CAS  Google Scholar 

  103. Wu J, Chen D (2018) Synthesis and characterization of waterborne polyurethane based on aliphatic diamine sulphonate and liquefiable dimethylol propionic acid. Prog Org Coatings 118:116–121. https://doi.org/10.1016/j.porgcoat.2018.02.001

    Article  CAS  Google Scholar 

  104. Stopilha RT, Xavier-júnior FH, De VCL (2019) Particles: bulk solids and aqueous dispersions. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2019.1611440

    Article  Google Scholar 

  105. De Lima CR, De Souza PR, Stopilha RT, De Morais WA (2017) Formation and structure of chitosan-poly (sodium methacrylate) complex nanoparticles. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2017.1296772

    Article  Google Scholar 

  106. De LCRM, Gomes DN, Filho JRDM (2018) Colloids and surfaces B : biointerfaces anionic and cationic drug sorption on interpolyelectrolyte complexes. Coll Surfaces B Biointerfaces 170:210–218. https://doi.org/10.1016/j.colsurfb.2018.05.071

    Article  CAS  Google Scholar 

  107. Ren L, Guo X, Zhao Y, Qiang T (2019) Synthesis and properties of waterborne polyurethane incorporated with phenolic acid grafted oligochitosan. Prog Org Coatings 135:410–416. https://doi.org/10.1016/j.porgcoat.2019.06.030

    Article  CAS  Google Scholar 

  108. Zhou X, Fang C, Yu Q (2015) Synthesis of polyurethane dispersions in nanoparticles and their properties that depend on aging time. J Dispers Sci Technol 36:1178–1189. https://doi.org/10.1080/01932691.2014.961195

    Article  CAS  Google Scholar 

  109. Li Q, Sun DC (2007) Synthesis and characterization of high solid content aqueous polyurethane dispersion. J Appl Polym Sci 105:2516–2524. https://doi.org/10.1002/app.24627

    Article  CAS  Google Scholar 

  110. Christopher G, Anbu Kulandainathan M, Harichandran G (2015) Comparative study of effect of corrosion on mild steel with waterborne polyurethane dispersion containing graphene oxide versus carbon black nanocomposites. Prog Org Coatings 89:199–211. https://doi.org/10.1016/j.porgcoat.2015.09.022

    Article  CAS  Google Scholar 

  111. Chen F, Zhou D, Yang L, Sun J, Wu J (2018) Poly(dopamine) coated graphene oxide as multi-functional filler in waterborne polyurethane. Mat Res Exp 6(1):015308

    Article  Google Scholar 

  112. Zhou X, Fang C, Lei W (2017) Thermal and crystalline properties of waterborne polyurethane by in situ water reaction process and the potential application as biomaterial. Prog Org Coatings 104:1–10. https://doi.org/10.1016/j.porgcoat.2016.12.001

    Article  CAS  Google Scholar 

  113. Fuensanta M, Jofre-Reche JA, Rodríguez-Llansola F et al (2018) Structure and adhesion properties before and after hydrolytic ageing of polyurethane urea adhesives made with mixtures of waterborne polyurethane dispersions. Int J Adhes Adhes 85:165–176. https://doi.org/10.1016/j.ijadhadh.2018.06.002

    Article  CAS  Google Scholar 

  114. Kim KM, Park HW, Shim GS (2020) Mechanical properties and decomposition performance of peelable coating containing UiO-66 catalyst and waterborne silane-terminated polyurethane dispersions. J Mater Sci 55:2604–2617. https://doi.org/10.1007/s10853-019-04184-2

    Article  CAS  Google Scholar 

  115. Liao L, Li X, Wang Y (2016) Effects of surface structure and morphology of nanoclays on the properties of jatropha curcas oil-based waterborne polyurethane/ clay nanocomposites. Ind Eng Chem Res 55:11689–11699. https://doi.org/10.1021/acs.iecr.6b02527

    Article  CAS  Google Scholar 

  116. Stefanović IS, Špírková M, Ostojić S (2017) Montmorillonite/poly(urethane-siloxane) nanocomposites: morphological, thermal, mechanical and surface properties. Appl Clay Sci 149:136–146. https://doi.org/10.1016/j.clay.2017.08.021

    Article  CAS  Google Scholar 

  117. Ni L, Mao Y, Liu Y (2020) Synergistic reinforcement of waterborne polyurethane films using palygorskite and dolomite as micro/nano-fillers. J Polym Res 27:1–8. https://doi.org/10.1007/s10965-019-1995-y

    Article  CAS  Google Scholar 

  118. Cakić SM, Ristić IS, M-Cincović M (2016) Preparation and characterization of waterborne polyurethane/silica hybrid dispersions from castor oil polyols obtained by glycolysis poly(ethylene terephthalate) waste. Int J Adhes Adhes 70:329–341. https://doi.org/10.1016/j.ijadhadh.2016.07.010

    Article  CAS  Google Scholar 

  119. Ding X, Wang X, Zhang H (2020) Preparation of waterborne polyurethane-silica nanocomposites by a click chemistry method. Mater Today Commun 23:100911. https://doi.org/10.1016/j.mtcomm.2020.100911

    Article  CAS  Google Scholar 

  120. Han Y, Hu J, Xin Z (2018) In-situ incorporation of alkyl-grafted silica into waterborne polyurethane with high solid content for enhanced physical properties of coatings. Polymers. https://doi.org/10.3390/polym10050514

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hassanajili S, Sajedi MT (2016) Fumed silica/polyurethane nanocomposites: effect of silica concentration and its surface modification on rheology and mechanical properties. Iran Polym J 25:697–710. https://doi.org/10.1007/s13726-016-0458-0

    Article  Google Scholar 

  122. Cakić SM, Ristić IS, Stojiljković DT (2019) Effect of the silica nanofiller on the properties of castor oil-based waterborne polyurethane hybrid dispersions based on recycled PET waste. Polym Bull 76:1217–1238. https://doi.org/10.1007/s00289-018-2429-4

    Article  CAS  Google Scholar 

  123. Gao X, Bilal M, Ali N (2020) Two-dimensional nanosheets functionalized water-borne polyurethane nanocomposites with improved mechanical and anti-corrosion properties. Inorg Nano-Metal Chem. https://doi.org/10.1080/24701556.2020.1749656

    Article  Google Scholar 

  124. Yin S, Ren X, Lian P (2020) Synergistic effects of black phosphorus/boron nitride nanosheets on enhancing the flame-retardant properties of waterborne polyurethane and its flame-retardant mechanism. Polymers 12:1–14. https://doi.org/10.3390/polym12071487

    Article  CAS  Google Scholar 

  125. Da Silva VD, Dos Santos LM, Subda SM (2013) Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polym Bull 70:1819–1833. https://doi.org/10.1007/s00289-013-0927-y

    Article  CAS  Google Scholar 

  126. Kausar A (2016) Waterborne polyurethane-coated polyamide/fullerene composite films: mechanical, thermal, and flammability properties. Int J Polym Anal Charact 21:275–285. https://doi.org/10.1080/1023666X.2016.1147729

    Article  CAS  Google Scholar 

  127. Dias G, Prado M, Ligabue R (2018) Hybrid PU/synthetic talc/organic clay ternary nanocomposites: thermal, mechanical and morphological properties. Polym Polym Compos 26:127–140. https://doi.org/10.1177/096739111802600201

    Article  CAS  Google Scholar 

  128. Dias G, Prado M, Le Roux C (2020) Synthetic talc as catalyst and filler for waterborne polyurethane-based nanocomposite synthesis. Polym Bull 77:975–987. https://doi.org/10.1007/s00289-019-02789-w

    Article  CAS  Google Scholar 

  129. Prado MA, Dias G, dos Santos LM (2020) The influence of Ni/Mg content of synthetic Mg/Ni talc on mechanical and thermal properties of waterborne polyurethane nanocomposites. SN Appl Sci. https://doi.org/10.1007/s42452-020-2852-7

    Article  Google Scholar 

  130. dos Santos LM, Ligabue R, Dumas A (2018) Waterborne polyurethane/Fe3O4-synthetic talc composites: synthesis, characterization, and magnetic properties. Polym Bull 75:1915–1930. https://doi.org/10.1007/s00289-017-2133-9

    Article  CAS  Google Scholar 

  131. Lyu J, Xu K, Zhang N (2019) In situ incorporation of diamino silane group into waterborne polyurethane for enhancing surface hydrophobicity of coating. Molecules. https://doi.org/10.3390/molecules24091667

    Article  PubMed  PubMed Central  Google Scholar 

  132. Han Y, Hu J, Xin Z (2019) Facile preparation of high solid content waterborne polyurethane and its application in leather surface finishing. Prog Org Coatings 130:8–16. https://doi.org/10.1016/j.porgcoat.2019.01.031

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Mhaske.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, S.M., Jadhav, S.M., Patil, M.J. et al. Recent developments in waterborne polyurethane dispersions (WPUDs): a mini-review on thermal and mechanical properties improvement. Polym. Bull. 79, 5709–5745 (2022). https://doi.org/10.1007/s00289-021-03814-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03814-7

Keywords

Navigation