Skip to main content
Log in

AC conductivity and dielectric studies in polypyrrole wrapped tungsten disulphide composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Using in situ chemical polymerization method, polypyrrole/tungsten disulphide (PPy/WS2) composites were synthesized in various compositions viz. 10, 20, 30, and 40 wt% of WS2 in polypyrrole. Composites were structurally and morphologically characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy techniques. AC response studies of the composites at room temperature were carried out in the frequency range 50 Hz–1 MHz. When compared with pristine PPy, the composites have exhibited enhanced conductivity and the same has been reflected in the complex plane impedance plots. This indicates that the conduction mechanism is due to the hopping of charge carriers. The loss tangent curves of the composites have been explained using Rezlescu model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xie D, Zhang M, Cheng F, BoFan H, Xie S, Liu P, Tu J (2018) Hierarchical MoS2@ polypyrrole core–shell microspheres with enhanced electrochemical performances for lithium storage. Electrochim Acta 269:632–639

    Article  CAS  Google Scholar 

  2. Sun A, Li Z, Wei T, Li Y, Cui P (2009) Chemical highly sensitive humidity sensor at low humidity based on the quaternized polypyrrole composite film. Sensors Actuators B Chem 142:197–203. https://doi.org/10.1016/j.snb.2009.08.028

    Article  CAS  Google Scholar 

  3. Chethan B, Prakash HGR, Ravikiran YT, Kumari SCV, Manjunatha S, Thomas S (2020) Humidity sensing performance of hybrid nanorods of polyaniline-Yttrium oxide composite prepared by mechanical mixing method. Talanta 215:120906. https://doi.org/10.1016/j.talanta.2020.120906

    Article  PubMed  CAS  Google Scholar 

  4. Sunilkumar A, Manjunatha S, Machappa T, Chethan B, Ravikiran YT (2019) A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature. Bull Mater Sci 42:271. https://doi.org/10.1007/s12034-019-1955-5

    Article  CAS  Google Scholar 

  5. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym Plast Technol Eng 51:1487–1500. https://doi.org/10.1080/03602559.2012.710697

    Article  CAS  Google Scholar 

  6. Tu CC, Peng PW, Lin LY (2018) Weight ratio effects on morphology and electrocapacitative performance for MoS2/polypyrrole electrodes. Appl Surf Sci 444:789–799

    Article  CAS  Google Scholar 

  7. Tessler N, Denton GJ, Friend RH (1996) Lasing from conjugated-polymer microcavities. Nature 382:695–697

    Article  CAS  Google Scholar 

  8. Manjunatha S, Machappa T, Ravikiran YT, Chethan B, Sunilkumar A (2019) Polyaniline based stable humidity sensor operable at room temperature. Phys B Phys Condens Matter 561:170–178. https://doi.org/10.1016/j.physb.2019.02.063

    Article  CAS  Google Scholar 

  9. Ćirić-Marjanovic G (2013) Recent advances in polyaniline composites with metals, metalloids and nonmetals. Synth Met 170:31–56. https://doi.org/10.1016/j.synthmet.2013.02.028

    Article  CAS  Google Scholar 

  10. L.Y. H. Liu, J. Ge, E. Ma, Advanced biomaterials for biosensor and the ranostics, Elsevier Inc. (2019). doi:https://doi.org/10.1016/B978-0-12-813477-1.00010-4.

  11. Stejskal J, Acharya U, Bober P, Hajná M, Trchová M, Mi M, Omastová M, Pa I, Gavrilov N (2019) Applied Surface Science Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction. Appl Surf Sci 492:497–503. https://doi.org/10.1016/j.apsusc.2019.06.175

    Article  CAS  Google Scholar 

  12. Acharya U, Bober P, Trchová M, Zhigunov A, Stejskal J (2018) Jiri Pfleger, Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite. Polymer (Guildf) 150:130–137

    Article  CAS  Google Scholar 

  13. Basavaraja C, Choi YM, Park HT, Huh DS, Lee JW, Revanasiddappa M, Raghavendra SC, Khasim S, Vishnuvardhan TK (2007) Preparation, characterization and low frequency AC conduction of polypyrrole-lead titanate composites. Bull Korean Chem Soc 28:1104–1108

    Article  CAS  Google Scholar 

  14. Geng L, Zhao Y, Huang X, Wang S, Zhang S, Wu S (2007) Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sensors And Actuators B Chem 120:568–572

    Article  CAS  Google Scholar 

  15. Megha R, Kotresh S, Ravikiran YT, Ramana CHVV, Kumari SCV, Thomas S (2017) Study of alternating current conduction mechanism in polypyrrole-magnesium ferrite hybrid nanocomposite through correlated barrier hopping model. Compos Interfaces 24:55–68. https://doi.org/10.1080/09276440.2016.1185298

    Article  CAS  Google Scholar 

  16. T.K. Vishnuvardhan, V.R. Kulkarni, C. Basavaraja, S.C. Raghavendra, Synthesis , characterization and AC conductivity of polypyrrole / Y 2O 3 composites, 29 (2006) 77–83.

  17. Ravikiran YT, Lagare MT, Sairam M, Mallikarjuna NN, Sreedhar B, Manohar S, MacDiarmid AG, Aminabhavi TM (2006) Synthesis, characterization and low frequency AC conduction of polyaniline/niobium pentoxide composites. Synth Met 156:1139–1147. https://doi.org/10.1016/j.synthmet.2006.08.005

    Article  CAS  Google Scholar 

  18. Chougule MA, Dalavi DS, Patil PS, Moholkar AV, Agawane GL, Kim JH, Sen S, Patil VB (2012) Novel method for fabrication of room temperature polypyrrole – ZnO nanocomposite NO2 sensor. Measurement 45:1989–1996. https://doi.org/10.1016/j.measurement.2012.04.023

    Article  Google Scholar 

  19. Machappa T, Prasad MVNA (2009) Low frequency AC conduction in polyaniline / Zinc tungstate ( PANI / ZnWO 4) composites. Ferroelectrics 392:71–80. https://doi.org/10.1080/00150190903412523

    Article  CAS  Google Scholar 

  20. Machappa T, Prasad MVNA (2009) AC conductivity and dielectric behavior of polyaniline / sodium metavenadate ( PANI / NaVO3) composites. Phys B Phys Condens Matter 404:4168–4172. https://doi.org/10.1016/j.physb.2009.07.194

    Article  CAS  Google Scholar 

  21. Suri K, Annapoorni S, Sarkar AK, Tandon RP (2002) Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sens Actuators 81:277–282

  22. Kapralova VM, Sapurina IY, Sudar NT (2018) Variation in the conductivity of polyaniline nanotubes during their formation. Semiconductors 52:816–819

    Article  CAS  Google Scholar 

  23. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: The new two-dimensional nanomaterial. Angew Chemie - Int Ed 48:7752–7777. https://doi.org/10.1002/anie.200901678

    Article  CAS  Google Scholar 

  24. Geleta GS (2018) Zhen Zhao, Zhenxin Wang, A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B-1. Analyst 143:1644–1649

    Article  CAS  Google Scholar 

  25. Z. Hualian, L. Xingbin, W. Feifei, H. Zhufeng, H. Han, Fan Xueying, J. Junyi, Vertically aligned , polypyrrole encapsulated MoS2 / graphene composites for high-rate LIBs anode Vertically aligned , Ceram. Int. 44 (2018) 7611–7617. doi:https://doi.org/10.1016/j.ceramint.2018.01.180.

  26. Manjunatha S, Rajesh S, Vishnoi P, Rao CNR (2017) Reaction with organic halides as a general method for the covalent functionalization of nanosheets of 2D chalcogenides and related materials. J Mater Res 32:2984–2992. https://doi.org/10.1557/jmr.2017.224

    Article  CAS  Google Scholar 

  27. Sunilkumar A, Manjunatha S, Chethan B, Ravikiran YT, Machappa T (2019) Polypyrrole – Tantalum disulfide composite : An efficient material for fabrication of room temperature operable humidity sensor. Sensors Actuators A Phys 298:111593. https://doi.org/10.1016/j.sna.2019.111593

    Article  CAS  Google Scholar 

  28. Vishnoi P, Rajesh S, Manjunatha S, Bandyopadhyay A, Barua M, Pati SK, Rao CNR (2017) Doping phosphorene with holes and electrons through molecular charge transfer. ChemPhysChem 18:2985–2989. https://doi.org/10.1002/cphc.201700789

    Article  PubMed  CAS  Google Scholar 

  29. Chao J, Yang L, Liu J, Hu R, Zhu M (2018) Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochim Acta 270:387–394

    Article  CAS  Google Scholar 

  30. Rao CNR, Gopalakrishnan K, Maitra U (2015) Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas. ACS Appl Mater Interfaces 7:7809–7832. https://doi.org/10.1021/am509096x

    Article  PubMed  CAS  Google Scholar 

  31. Manjunatha S, Machappa T, Sunilkumar A, Ravikiran YT (2018) Tungsten disulfide: an efficient material in enhancement of AC conductivity and dielectric properties of polyaniline. J Mater Sci Mater Electron 29:11581–11590. https://doi.org/10.1007/s10854-018-9255-1

    Article  CAS  Google Scholar 

  32. Manjunatha S, Chethan B, Ravikiran YT, Machappa T (2018) Room temperature humidity sensor based on polyaniline- tungsten disulfide composite. AIP Conf Proc 1953:030096–1–030096–4. https://doi.org/10.1063/1.5032431

    Article  CAS  Google Scholar 

  33. Tomšík E, Morávková Z, Stejskal J, Trchová M, Zemek J (2012) In situ polymerized polyaniline films: the top and the bottom. Synth Met 162:2401–2405

    Article  CAS  Google Scholar 

  34. Li M, Wei Z, Jiang L (2008) Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. J Mater Chem 18:2276–2280. https://doi.org/10.1039/b800289d

    Article  CAS  Google Scholar 

  35. Crowley K, Cassidy J (2003) In situ resonance Raman spectroelectrochemistry of polypyrrole doped with dodecylbenzenesulfonate. Jourrnal Electroanal Chem 547:75–82. https://doi.org/10.1016/S0022-0728(03)00191-8

    Article  CAS  Google Scholar 

  36. Chougule MA, Sen S, Patil VB (2011) Facile and efficient route for Microstructural, preparation of polypyrrole–ZnO nanocomposites: Properties, optical and charge transport. J Appl Polym Sci. https://doi.org/10.1002/app.36475

    Article  Google Scholar 

  37. Chethan B, Prakash HGR, Ravikiran YT, Vijayakumari SC, Thomas S (2019) Polypyyrole based core-shell structured composite based humidity sensor operable at room temperature. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2019.126639

    Article  Google Scholar 

  38. Megha R, Ravikiran YT, Kumari SCV, Prakash HGR, Tiwari SK, Thomas S (2018) Enhancement in alternating current conductivity of polypyrrole by multi- walled carbon nanotubes via single electron tunneling. Diam Relat Mater 87:163–171

    Article  CAS  Google Scholar 

  39. Manjunatha S, Machappa T, Ravikiran YT, Chethan B, Revanasiddappa M (2019) Room temperature humidity sensing performance of polyaniline – holmium oxide composite. Appl Phys A 125:361. https://doi.org/10.1007/s00339-019-2638-1

    Article  CAS  Google Scholar 

  40. Badi N, Khasim S, Roy AS (2016) Micro-Raman spectroscopy and effective conductivity studies of graphene nanoplatelets/polyaniline composites. J Mater Sci Mater Electron 27:6249–6257. https://doi.org/10.1007/s10854-016-4556-8

    Article  CAS  Google Scholar 

  41. Maity N, Kuila A, Das S, Mandal D, Shit A, Nandi AK (2015) Optoelectronic and photovoltaic properties of graphene quantum dot–polyaniline nanostructures. J Mater Chem A 3:20736–20748. https://doi.org/10.1039/C5TA06576C

    Article  CAS  Google Scholar 

  42. I. Sadiq, S. Naseem, M. Naeem Ashiq, M.A. Khan, S. Niaz, M.U. Rana, Structural and dielectric properties of doped ferrite nanomaterials suitable for microwave and biomedical applications, Prog. Nat. Sci. Mater. Int. 25 (2015) 419–424. doi:https://doi.org/10.1016/j.pnsc.2015.09.011.

  43. Manjunatha S, Sunilkumar A, Ravikiran YT, Machappa T (2019) Effect of holmium oxide on impedance and dielectric behavior of polyaniline–holmium oxide composites. J Mater Sci Mater Electron 30:10332–10341. https://doi.org/10.1007/s10854-019-01371-4

    Article  CAS  Google Scholar 

  44. Bisquert J, Belmonte GG (2004) Interpretation of AC conductivity of lightly doped conducting polymers in terms of hopping conduction. Russ J Electrochem 40:352–358

    Article  CAS  Google Scholar 

  45. Xu BH, Lin BZ, Chen ZJ, Li XL, Wang QQ (2009) Preparation and electrical conductivity of polypyrrole/WS2 layered nanocomposites. J Colloid Interface Sci 330:220–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors thank Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalure, for providing facilities for structural characterization of the samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. T. Ravikiran or T. Machappa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunilkumar, A., Manjunatha, S., Ravikiran, Y.T. et al. AC conductivity and dielectric studies in polypyrrole wrapped tungsten disulphide composites. Polym. Bull. 79, 1391–1407 (2022). https://doi.org/10.1007/s00289-021-03552-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03552-w

Navigation