Skip to main content
Log in

Tungsten disulfide: an efficient material in enhancement of AC conductivity and dielectric properties of polyaniline

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Conducting polyaniline–tungsten disulfide (PANI–WS2) composites with 10, 20, 30, 40 and 50 wt% of WS2 in PANI were synthesized using one step in situ polymerization technique. Room temperature AC conductivity and the dielectric behavior of the aforementioned composites were investigated in the frequency range 50–106 Hz. Apart from obeying the power law above the critical frequency, indicating the universal behavior of disordered media; remarkable increase in conductivity of the composites by one order was observed. Complex plane impedance plots exhibited single semicircle for each composite, indicating the conduction mechanism is by hopping of charge carriers. High dielectric constant of order 106, at the lower frequency for the composites, started decreasing with increase in applied frequencies; this could be attributed to the Maxwell–Wagner polarization. Dielectric tangent loss curves exhibited peculiar peaks due to the relaxation loss at the resonant frequency of the hopping charge carriers and the applied AC field. Higher values of dielectric loss in the lower frequency range, make these materials as suitable candidates to design the medium frequency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.G. Macdiarmid, J.C. Chiang, M. Halpern, W.S. Huang, S.L. Mu, L.D. Nanaxakkara, S.W. Wu, S.I. Yaniger, Mol. Cryst. Liq. Cryst. 121, 173 (1985)

    Article  Google Scholar 

  2. A.G. Macdiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein, Synth. Met. 18, 285 (1987)

    Article  Google Scholar 

  3. Y.T. Ravikiran, M.T. Lagare, M. Sairam, N.N. Mallikarjuna, B. Sreedhar, S. Manohar, A.G. MacDiarmid, T.M. Aminabhavi, Synth. Met. 156, 1139 (2006)

    Article  Google Scholar 

  4. R.D. Balikile, A.S. Roy, S.C. Nagaraju, G. Ramgopal, J. Mater. Sci. Mater. Electron. 28, 7368 (2017)

    Article  Google Scholar 

  5. P. Somani, B.B. Kale, D.P. Amalnerkar, Synth. Met. 106, 53 (1999)

    Article  Google Scholar 

  6. T. Machappa, M.V.N.A. Prasad, Ferroelectrics 392, 71 (2009)

    Article  Google Scholar 

  7. T. Machappa, M.V.N.A. Prasad, Phys. B 404, 4168 (2009)

    Article  Google Scholar 

  8. B.P. Prasanna, D.N. Avadhani, H.B. Muralidhara, K. Chaitra, V.R. Thomas, M. Revanasiddappa, N. Kathyayini, Bull. Mater. Sci. 39, 667 (2016)

    Article  Google Scholar 

  9. A.S. Roy, K.R. Anilkumar, M.V.N.A. Prasad, J. Appl. Polym. Sci. 123, 1928 (2012)

    Article  Google Scholar 

  10. R. Megha, Y.T. Ravikiran, S.C.V. Kumari, T. Chandrasekhar, S. Thomas, Polym. Compos. (2017). https://doi.org/10.1002/pc.24375

    Google Scholar 

  11. K.C. Sajjan, A.S. Roy, A. Parveen, S. Khasim, J. Mater. Sci. Mater. Electron. 25, 1237 (2014)

    Article  Google Scholar 

  12. G. Ciric Marjanovic, Synth. Met. 177, 1 (2013)

    Article  Google Scholar 

  13. J. Benson, I. Kovalenko, S. Boukhalfa, D. Lashmore, M. Sanghadasa, G. Yushin, Adv. Mater. 25, 6625 (2013)

    Article  Google Scholar 

  14. H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Energy Environ. Sci. 6, 1185 (2013)

    Article  Google Scholar 

  15. Y. Liu, R. Deng, Z. Wang, H. Liu, J. Mater. Chem. 22, 13619 (2012)

    Article  Google Scholar 

  16. H.S.S.R. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010)

    Article  Google Scholar 

  17. S. Manjunatha, S. Rajesh, P. Vishnoi, C.N.R. Rao, J. Mater. Res. 32, 2984 (2017)

    Article  Google Scholar 

  18. P. Vishnoi, S. Rajesh, S. Manjunatha, A. Bandyopadhyay, M. Barua, S.K. Pati, C.N.R. Rao, ChemPhysChem 18, 2985 (2017)

    Article  Google Scholar 

  19. C.N.R. Rao, K. Gopalakrishnan, U. Maitra, ACS Appl. Mater. Interfaces 7, 7809 (2015)

    Article  Google Scholar 

  20. K. Gopalakrishnan, S. Sultan, A. Govindaraj, C.N.R. Rao, Nano Energy 12, 52 (2015)

    Article  Google Scholar 

  21. A.S. Pawbake, R.G. Waykar, D.J. Late, S.R. Jadkar, ACS Appl. Mater. Interfaces 8, 3359 (2016)

    Article  Google Scholar 

  22. B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, J. Am. Chem. Soc. 136, 14121 (2014)

    Article  Google Scholar 

  23. C.S. Rout, P.D. Joshi, R.V. Kashid, D.S. Joag, M.A. More, A.J. Simbeck, M. Washington, S.K. Nayak, D.J. Late, Sci. Rep. 3, 3282 (2013)

    Article  Google Scholar 

  24. W. Yang, J. Shang, J. Wang, X. Shen, B. Cao, N. Peimyoo, C. Zuo, Y. Chen, Y. Wang, C. Cong, W. Huang, T. Yu, Nano Lett. 16, 1560 (2016)

    Article  Google Scholar 

  25. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A. Mishchenko, Nat. Nanotechnol. 8, 100 (2012)

    Article  Google Scholar 

  26. J.D. Mehew, S. Unal, E.T. Alonso, G.F. Jones, S.F. Ramadhan, M.F. Craciun, S. Russo, Adv. Mater. 29, 1700222 (2017)

    Article  Google Scholar 

  27. R. Megha, Y.T. Ravikiran, S.C.V. Kumari, S. Thomas, Appl. Phys. A 123, 245 (2017)

    Article  Google Scholar 

  28. A. Kuc, N. Zibouche, T. Heine, Phys. Rev. B 83, 245213 (2011)

    Article  Google Scholar 

  29. Y.G. Wang, H.Q. Li, Y.Y. Xia, Adv. Mater. 18, 2619 (2006)

    Article  Google Scholar 

  30. R.K. Pandey, V. Lakshminarayanan, J. Phys. Chem. C 113, 21596 (2009)

    Article  Google Scholar 

  31. S.V.P. Vattikuti, C. Byon, V. Chitturi, Superlattices Microstruct. 94, 39 (2016)

    Article  Google Scholar 

  32. V. Gautam, A. Srivastava, K.P. Singh, V.L. Yadav, Polym. Sci. Ser. A 58, 206 (2016)

    Article  Google Scholar 

  33. S. Quillard, G. Louarn, S. Lefrant, A.G. Macdiarmid, Phys. Rev. B 50, 12496 (1994)

    Article  Google Scholar 

  34. N. Vijayakumar, E. Subramanian, D.P. Padiyan, Synth. Met. 162, 126 (2012)

    Article  Google Scholar 

  35. S. Kotresh, Y.T. Ravikiran, S.C.V. Kumari, C.V.V. Ramana, A.S. Anu, K.M. Batoo, Polym. Bull. (2017). https://doi.org/10.1007/s00289-017-2169-x

    Google Scholar 

  36. M.K. Traore, W.T.K. Stevenson, B.J. McCormick, R.C. Dorey, S. Wen, D. Meyers, Synth. Met. 40, 137 (1991)

    Article  Google Scholar 

  37. I. Bekri-Abbes, E. Srasra, React. Funct. Polym. 70, 11 (2010)

    Article  Google Scholar 

  38. M. Khairy, Synth. Met. 189, 34 (2014)

    Article  Google Scholar 

  39. J. Bisquert, G.G. Belmonte, Russ. J. Electrochem. 40, 352 (2004)

    Article  Google Scholar 

  40. F. Zuo, M. Angelopoules, A.G. Macdiarmid, A.J. Epstein, Phys. Rev. B 39, 3570 (1989)

    Article  Google Scholar 

  41. J. Huang, Z. Yang, Z. Feng, X. Xie, X. Wen, Sci. Rep. 6, 24471 (2016)

    Article  Google Scholar 

  42. S. Sarker, A.J.S. Ahammad, H.W. Seo, D.M. Kim, Int. J. Photoenergy 2014, 851705 (2014)

    Article  Google Scholar 

  43. J.C. Dyre, J. Appl. Phys. 64, 2456 (1988)

    Article  Google Scholar 

  44. N. Maity, A. Kuila, S. Das, D. Mandal, A. Shit, A.K. Nandi, J. Mater. Chem. A 3, 20736 (2015)

    Article  Google Scholar 

  45. H.M. Kim, C.Y. Lee, J. Joo, J. Korean Phys. Soc. 36, 371 (2000)

    Google Scholar 

  46. K.W. Wagner, Ann. Phys. 5, 817 (1913)

    Article  Google Scholar 

  47. S. Sinha, S.K. Chatterjee, J. Ghosh, A.K. Meikap, Polym. Compos. 38, 287 (2017)

    Article  Google Scholar 

  48. N. Rezlescu, E. Rezlescu, Phys. Status Solid. 23, 575 (1974)

    Article  Google Scholar 

  49. J. Bao, J. Zhou, Z. Yue, L. Li, Z. Gui, J. Magn. Magn. Mater. 250, 131 (2002)

    Article  Google Scholar 

  50. I. Sadiq, S. Naseem, M.N. Ashiq, M.A. Khan, S. Niaz, M.U. Rana, Prog. Nat. Sci. Mater. Int. 25, 419 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

S. Manjunatha acknowledges Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore, in providing facilities for structural characterization of the samples and U. Gupta, Dr. P. Vishnoi for their useful discussions. Authors (S. Manjunatha, A. Sunilkumar and T. Machappa) render special thanks to Dr. Yashvanth Bhupal, Director of Ballari Institute of Technology and Management, Ballari for his support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Machappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, S., Machappa, T., Sunilkumar, A. et al. Tungsten disulfide: an efficient material in enhancement of AC conductivity and dielectric properties of polyaniline. J Mater Sci: Mater Electron 29, 11581–11590 (2018). https://doi.org/10.1007/s10854-018-9255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9255-1

Navigation