Skip to main content
Log in

Micro-Raman spectroscopy and effective conductivity studies of graphene nanoplatelets/polyaniline composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The graphene, a monolayer of carbon atoms arranged in two dimensional lattices has attracted greater research interests due to its exceptional electrical and optical properties. The properties of conducting polymer can be tailored to a large extent with a suitable formation of nanocomposites using graphene material. In this paper we report on the preparation and characterization of transparent conductive graphene nanoplatelets/polyaniline (GNPs–PANI) composite coatings. The structural features of the nanocompositeswere investigated using Fourier transform infrared spectra (FTIR) and micro Raman analysis. FTIR spectra of GNP–PANI coating clearly reveal the presence of characteristic peaks of both PANI and GNP indicating the formation of a composite film. The micro Raman spectra reveal the presence of characteristic D and G modes of vibrations in composite film (GNP–PANI) with intensity of G mode greater than the D mode due to the composite formation. The optical Raman images confirm the uniform dispersion of GNP in PANI. The transport properties of the composite film were studied through AC/DC conductivity measurement, dielectric behavior is analyzed with respect to dielectric constant, loss tangent, and Cole–Cole plots characteristics. The study of transport properties of the composite film reveals that the presence of GNPin the PANI significantly tailors the electrical properties of pure PANI. Due to its transparent nature and excellent electrical properties, these GNP–PANI nanocomposites can find wide technological applications in the fabrication of optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. David, J. Evanoff, G. Chumanov, ChemPhysChem 6, 1221–1231 (2005)

    Article  Google Scholar 

  2. S. Ansari, E.P. Giannelis, J. Poly. Sci. Part B Polym. Phys. 47(9), 888–897 (2009)

    Article  Google Scholar 

  3. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, Nat. Nanotechnol. 3(6), 327–331 (2008)

    Article  Google Scholar 

  4. S. Stankovich, D.A. Dikin, G.H.B. Domett, K.M. Kohlhaas, E.J. Zimney, R.S. Ruoff, Nature 442(7100), 282–286 (2006)

    Article  Google Scholar 

  5. H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, Z. Jin, Biomacromolecules 11(9), 2345–2351 (2010)

    Article  Google Scholar 

  6. K. Zhang, L. Zhang, X.S. Zhao, J. Wu, Chem. Mater. 22(4), 1392–1401 (2010)

    Article  Google Scholar 

  7. X. Zhao, Q. Zhang, D. Chen, P. Lu, Macromolecules 43(5), 2357–2363 (2010)

    Article  Google Scholar 

  8. T. Kuila, S. Bose, C.E. Hong, M.E. Uddin, P. Khanra, N.H. Kim, J.H. Lee, Carbon 49(3), 1033–1037 (2011)

    Article  Google Scholar 

  9. J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Appl. Phys. Lett. 92(26), 263–302 (2008)

    Google Scholar 

  10. T. Kuila, S.K. Srivastava, A.K. Bhowmick, A.K. Saxena, Compos. Sci. Technol. 68, 3234–3239 (2009)

    Article  Google Scholar 

  11. K. Tejendra, B.P. Singh, R.B. Mathur, S.R. Dhakate, Nanoscale 6, 842–850 (2014)

    Article  Google Scholar 

  12. Y. Si, T. Samulski, NanoLett 8, 1679–1682 (2008)

    Article  Google Scholar 

  13. R.D. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228–240 (2010)

    Article  Google Scholar 

  14. G. Wang, X. Shen, B. Wang, J. Yao, J. Park, Carbon 47, 1359–1364 (2009)

    Article  Google Scholar 

  15. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229–1231 (2008)

    Article  Google Scholar 

  16. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132–145 (2010)

    Article  Google Scholar 

  17. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  18. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim et al., Nature 457, 706–710 (2009)

    Article  Google Scholar 

  19. J. Huang, X. Wang, A.J. de Mello, J.C. de Mello, D.D.C. Bradley, J. Mater. Chem 17(33), 3551–3554 (2007)

    Article  Google Scholar 

  20. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat. Nanotechnol. 3(2), 101–105 (2008)

    Article  Google Scholar 

  21. G. Eda, M. Chhowalla, NanoLett 9, 814–818 (2009)

    Article  Google Scholar 

  22. J. Liang, Y. Xu, Y. Huang, L. Zhang, Y. Wang, Y. Ma et al., J. PhysChem. 113, 9921–9927 (2009)

    Google Scholar 

  23. H. Kim, C.W. Macosko, Polymer 50, 3797–3809 (2009)

    Article  Google Scholar 

  24. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Electrochem. Commun. 11(6), 1158–1161 (2009)

    Article  Google Scholar 

  25. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, ACS. Appl. Mater. Interfaces 2(3), 821–828 (2010)

    Article  Google Scholar 

  26. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Carbon 48(2), 487–493 (2010)

    Article  Google Scholar 

  27. D.Y. Liu, J.R. Reynolds, ACS Appl. Mater. Interfaces 2(12), 3586 (2010)

    Article  Google Scholar 

  28. M. Lakshmi, A.S. Roy, A. Parveen, O.A. Al-Hartomy, S. Khasim, J. Mater. Res. 30, 2310–2318 (2015)

    Article  Google Scholar 

  29. S. Zhou, H. Zhang, Q. Zhao, X. Wang, J. Li, F. Wang, Carbon 52, 440–450 (2013)

    Article  Google Scholar 

  30. L. Mao, K. Zhang, H.S.O. Chan, J. Wu, Mater. Chem 22, 80 (2012)

    Article  Google Scholar 

  31. J. Li, H. Xie, Y. Li, J. Liu, Z. Li, Power Sources 196, 10775–10781 (2011)

    Article  Google Scholar 

  32. W. Liu, X. Yan, J. Chen, Y. Feng, Q. Xue, Nanoscale 5, 6053–6062 (2013)

    Article  Google Scholar 

  33. Y. Jin, S. Huang, M. Zhang, M. Jia, Synth. Met. 168, 58–64 (2013)

    Article  Google Scholar 

  34. L. Li, A.R. Raji, H. Fei, Y. Yang, E.L. Samuel, J.M. Tour, ACS Appl. Mater. Interfaces 5, 6622–6627 (2013)

    Article  Google Scholar 

  35. M. Xue, F. Li, J. Zhu, H. Song, T. Cao, J. Zhu, Adv. Funct. Mater. 22, 1284–1290 (2012)

    Article  Google Scholar 

  36. L. Zhang, G. Zhao, Y. Wang, Mater. Sci. Eng. C 33, 209–212 (2013)

    Article  Google Scholar 

  37. P. Yu, Y. Li, X. Zhao, L. Wu, Q. Zhang, Synth. Met. 185, 89–95 (2013)

    Article  Google Scholar 

  38. U. Rana, S. Malik, Chem. Commun. 48, 10862–10864 (2012)

    Article  Google Scholar 

  39. M. Grzeszczuk, A. Granska, R. Szostak, J. Int, Electrochem. Sci. 8, 8951–8965 (2013)

    Google Scholar 

  40. A.C. Ferrari, Solid State Commun. 143, 47–57 (2007)

    Article  Google Scholar 

  41. A.C. Ferrari, J. Robertson, Phys Rev B 61, 14095–14107 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support for this work, from the Deanship of Scientific research (DSR), University of Tabuk, Tabuk, Saudi Arabia, under Grant No. S-0146/1436.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nacer Badi or Syed Khasim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badi, N., Khasim, S. & Roy, A.S. Micro-Raman spectroscopy and effective conductivity studies of graphene nanoplatelets/polyaniline composites. J Mater Sci: Mater Electron 27, 6249–6257 (2016). https://doi.org/10.1007/s10854-016-4556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4556-8

Keywords

Navigation