Skip to main content

Advertisement

Log in

The effects of anionic surfactant on the mechanical, thermal, structure and morphological properties of epoxy–MWCNT composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

An anionic surface-active agent, linear alkyl benzene sulfonic acid (LABSA), was successfully utilized (2.5, 5.0, 7.5 and 10.0 wt%) to disperse multiwall carbon nanotubes (MWCNTs) in epoxy in order to enhance the properties of nanocomposites. The dispersion of the MWCNTs in the polymer matrix was observed using scanning electron microscopy. In addition, the mechanical properties of the composites such as tensile strength, flexural strength and impact strength were tested. Moreover, the thermal properties of the composites were examined using thermogravimetric analyzer and differential scanning calorimetry. The functional groups and crystalline properties of the nanocomposites were analyzed using Fourier transform infrared spectroscopy and X-ray diffraction, respectively. All the properties were improved significantly by the surface treatment of the MWCNTs using LABSA. The presence of LABSA prohibited the MWCNTs to re-agglomerate and form a big cluster which may lead to poor dispersion in the epoxy. It was found that the highest mechanical properties (tensile strength of 40.4 MPa and flexural strength of 23 MPa) of the nanocomposite were obtained using 5 wt% of LABSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Hao Z, Li L, Liao X, Sheng X, Zhang Y (2017) Preparation and toughening performance investigation of epoxy resins containing carbon nanotubes modified with hyperbranched polyester. Polym Bull 75:1013–1026. https://doi.org/10.1007/s00289-017-2076-1

    Article  CAS  Google Scholar 

  2. He Y, Zhang L, Chen G, Li X, Yao D, Lee JH, Zhang Y (2014) Surface functionalized carbon nanotubes and its effects on the mechanical properties of epoxy based composites at cryogenic temperature. Polym Bull 71:2465–2485. https://doi.org/10.1007/s00289-014-1202-6

    Article  CAS  Google Scholar 

  3. Gupta P, Bajpai M (2011) Development of siliconized epoxy resins and their application as anticorrosive coatings. Adv Chem Eng Sci 1:133–139. https://doi.org/10.4236/aces.2011.13020

    Article  CAS  Google Scholar 

  4. Sun Y, Liu W, Ma Z (2013) Synthesis of epoxy-terminated fluoropolymer via ATRP and the properties of epoxy thermosets modified with it. Polym Bull 70:1531–1542. https://doi.org/10.1007/s00289-013-0908-1

    Article  CAS  Google Scholar 

  5. Sprenger S (2013) Epoxy resins modified with elastomers and surface-modified silica nanoparticles. Polymer 54:4790–4797. https://doi.org/10.1016/j.polymer.2013.06.011

    Article  CAS  Google Scholar 

  6. Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828. https://doi.org/10.1016/j.ijbiomac.2017.04.074

    Article  CAS  PubMed  Google Scholar 

  7. Salasinska K, Barczewski M, Górny R, Kloziński A (2018) Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polym Bull 75:2511–2528. https://doi.org/10.1007/s00289-017-2163-3

    Article  CAS  Google Scholar 

  8. Suriati G, Mariatti M, Azizan A (2012) Silver-filled epoxy composites: effect of hybrid and silane treatment on thermal properties. Polym Bull 70:311–323. https://doi.org/10.1007/s00289-012-0808-9

    Article  CAS  Google Scholar 

  9. Wan Dalina WAD, Mariatti M, Tan SH (2012) Multi-walled carbon nanotubes buckypaper/epoxy composites: effect of loading and pressure on tensile and electrical properties. Polym Bull 75:1–17. https://doi.org/10.1007/s00289-018-2530-8

    Article  CAS  Google Scholar 

  10. Castrillo PD, Olmos D, Sue HJ, González-Benito J (2015) Mechanical characterization and fractographic study of epoxy–kaolin polymer nanocomposites. Compos Struct 133:70–76. https://doi.org/10.1016/j.compstruct.2015.07.040

    Article  Google Scholar 

  11. Islam MR, Beg DH, Jamari SS (2015) The effects of five different types of acid anhydrides and incorporation of montmorillonite nanoclays on thermosetting resins. Polym Bull 72:3007–3030. https://doi.org/10.1007/s00289-015-1450-0

    Article  CAS  Google Scholar 

  12. Dalina WAD, Mariatti M, Tan SH (2018) Effect of black ink loading on the properties of multi-walled carbon nanotubes/glass fibre/epoxy laminated hybrid composites. Polym Bull 75:3357–3375. https://doi.org/10.1007/s00289-017-2213-x

    Article  CAS  Google Scholar 

  13. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  14. Liao YH, Tondin OM, Liang Z, Zhang C, Wang B (2004) Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites. Adv Mater Sci A 385:175–181. https://doi.org/10.1016/j.msea.2004.06.031

    Article  CAS  Google Scholar 

  15. Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62:1993–1998. https://doi.org/10.1016/S0266-3538(02)00129-X

    Article  CAS  Google Scholar 

  16. Yao H, Hawkins SA, Sue H-J (2016) Preparation of epoxy nanocomposites containing well-dispersed graphene nanosheets. Compos Sci Technol 146:161–168. https://doi.org/10.1016/j.compscitech.2017.04.026

    Article  CAS  Google Scholar 

  17. Wang FX, Liang WY, Wang ZQ, Yang B, He L, Zhang K (2018) Preparation and property investigation of multi-walled carbon nanotube (MWCNT)/epoxy composite films as high-performance electric heating (resistive heating) element. eXPRESS Polym Lett 12:285–295. https://doi.org/10.3144/expresspolymlett.2018.26

    Article  CAS  Google Scholar 

  18. Li Z, Gao Y, Moon K-S, Yao Y, Tannenbaum A, Wong CP (2012) Automatic quantification of filler dispersion in polymer composites. Polymer 53:1571–1580. https://doi.org/10.1016/j.polymer.2012.01.048

    Article  CAS  Google Scholar 

  19. Tessema A, Zhao D, Moll J, Xu S, Yang R, Li C, Kumar SK, Kidane A (2017) Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polym Testing 57:101–106. https://doi.org/10.1016/j.polymertesting.2016.11.015

    Article  CAS  Google Scholar 

  20. Park S-J, Bae K-M, Seo M-K (2010) A study on rheological behavior of MWCNTs/epoxy composites. J Ind Eng Chem 16:337–339. https://doi.org/10.1016/j.jiec.2010.01.051

    Article  CAS  Google Scholar 

  21. Peng X, Li X, Li X (2012) Evaluation of the dispersing properties of polycarboxylate-type superplasticizers with different molecular weight in cement systems. J Dispers Sci Technol 34:1265–1272. https://doi.org/10.1080/01932691.2012.738130

    Article  CAS  Google Scholar 

  22. Korayem AH, Tourani N, Zakertabrizi M, Sabziparvar AM, Duan WH (2017) A review of dispersion of nanoparticles in cementitious matrices: nanoparticle geometry perspective. Constr Build Mater 153:346–357. https://doi.org/10.1016/j.conbuildmat.2017.06.164

    Article  CAS  Google Scholar 

  23. Sobolkina A, Mechtcherine V, Khavrus V, Maier D, Mende M, Ritschel M, Leonhardt A (2012) Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem Concr Comp 34:1104–1113. https://doi.org/10.1016/j.cemconcomp.2012.07.008

    Article  CAS  Google Scholar 

  24. Liu JQ, Xiao T, Liao K, Wu P (2007) Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalization. Nanotechnology 18:165701. https://doi.org/10.1088/0957-4484/18/16/165701

    Article  CAS  Google Scholar 

  25. Li Y, Li R, Fu X, Wang Y, Zhong W-HZ (2018) A bio-surfactant for defect control: multifunctional gelatin coated MWCNTs for conductive epoxy nanocomposites. Compos Sci Technol 159:216–224. https://doi.org/10.1016/j.compscitech.2018.03.001

    Article  CAS  Google Scholar 

  26. Rahmani F, Nouranian S, Mahdavi M, O’Haver JH (2017) A fundamental investigation of the surfactant-stabilized single-walled carbon nanotube/epoxy resin suspensions by molecular dynamics simulation. Mater Res Express 4:015016. https://doi.org/10.1088/2053-1591/aa5465

    Article  CAS  Google Scholar 

  27. Naik RB, Jagtap SB, Naik RS, Malvankar NG, Ratna D (2014) Effect of non-ionic surfactants on thermomechanical properties of epoxy/multiwall carbon nanotubes composites. Prog Org Coat 77:1883–1889. https://doi.org/10.1016/j.porgcoat.2014.06.024

    Article  CAS  Google Scholar 

  28. Kumar A, Ghosh PK, Yadav KL, Kumar K (2017) Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique. Compos Part B 113:291–299. https://doi.org/10.1016/j.compositesb.2017.01.046

    Article  CAS  Google Scholar 

  29. Cha J, Jin S, Shim JH, Park CS, Ryu HJ, Hong SH (2016) Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater Des 95:1–8. https://doi.org/10.1016/j.matdes.2016.01.077

    Article  CAS  Google Scholar 

  30. Gantayat S, Rout D, Swain SK (2017) Mechanical properties of functionalized multiwalled carbon nanotube/epoxy nanocomposites. Mater Today Proc 4:4061–4064. https://doi.org/10.1016/j.matpr.2017.02.308

    Article  Google Scholar 

  31. Gupta A, Kumar A, Patnaik A, Biswas S (2012) Effect of filler content and alkalization on mechanical and erosion wear behavior of CBPD filled bamboo fiber composites. J Surf Eng Mater Adv Technol 2:149–157. https://doi.org/10.4236/jsemat.2012.23024

    Article  CAS  Google Scholar 

  32. Voo R, Mariatti M, Sim LC (2012) Flexibility improvement of epoxy nanocomposites thin films using various flexibilizing additives. Compos Part B 43:3037–3043. https://doi.org/10.1016/j.compositesb.2012.05.032

    Article  CAS  Google Scholar 

  33. Christesen JD (2011) Mechanical properties of solvent cast graphene-polymer nanocomposites. Dissertation. College of William and Mary

  34. Rezazadeh V, Pourhossaini MR, Salimi A (2017) Effect of amine-functionalized dispersant on cure and electrical properties of carbon nanotube/epoxy nanocomposites. Prog Org Coat 11:389–394. https://doi.org/10.1016/j.porgcoat.2017.06.017

    Article  CAS  Google Scholar 

  35. Kumar A, Kumar K, Ghosh PK, Yadav KL (2017) MWCNT/TiO2 hybrid nano filler toward high-performance epoxy composite. Ultrason Sonochem 41:37–46. https://doi.org/10.1016/j.ultsonch.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  36. Cebeci H, Villoria RG, Hart AJ, Wardle BL (2009) Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos Sci Technol 56:2649–2656. https://doi.org/10.1016/j.compscitech.2009.08.006

    Article  CAS  Google Scholar 

  37. Loos MR, Coelho LAF, Pezzin SH, Amico SC (2008) Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices. Mat Res 11:347–352. https://doi.org/10.1590/S1516-14392008000300019

    Article  CAS  Google Scholar 

  38. T-t Wong, K-t Lau, W-y Tam, Etches JA, Kim J-K, Wu Y (2016) Effects of silane surfactant on Nano-ZnO and rheology properties of nano-ZnO/epoxy on the UV absorbability of nano-ZnO/epoxy/micron-HGF composite. Compos Part B 90:378–385. https://doi.org/10.1016/j.compositesb.2016.01.005

    Article  CAS  Google Scholar 

  39. Zakaria MR, Akil H, Kudus HA, Kadarman AH (2015) Improving flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing advanced hybrid filler system. Compos Struct 132:50–64. https://doi.org/10.1016/j.compstruct.2015.05.020

    Article  Google Scholar 

  40. Zakaria MR, Kudus HA, Akil H, Thirmizir ZM (2017) Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties. Compos Part B 119:57–66. https://doi.org/10.1016/j.compositesb.2017.03.023

    Article  CAS  Google Scholar 

  41. Theodore M, Hosur M, Thomas J, Jeelani S (2011) Influence of functionalization on properties of MWCNT–epoxy nanocomposites. Mater Sci Eng, A 528:1192–1200. https://doi.org/10.1016/j.msea.2010.09.095

    Article  CAS  Google Scholar 

  42. Dalina WAD, Tan SH, Mariatti M (2016) Properties of fiberglass/MWCNT buckypaper/epoxy laminated composites. Procedia Chem 19:935–942. https://doi.org/10.1016/j.proche.2016.03.138

    Article  CAS  Google Scholar 

  43. Rahman MM, Zainuddin S, Hosur MV, Malone JE, Salam MBA, Kumar A, Jeelani S (2012) Improvements in mechanical and thermo-mechanical properties of e-glass/epoxy composites using amino functionalized MWCNTs. Compos Struct 94:2397–2406. https://doi.org/10.1016/j.compstruct.2012.03.014

    Article  Google Scholar 

  44. Razali N, Sultan MTH, Mustapha F, Yidris N, Ishak MR (2014) Impact damage on composite structures—a review. Int J Eng Sci 3:08–20

    Google Scholar 

  45. Ambrozˇicˇ R, Šebenik U, Krajnc M (2016) Epoxy emulsions stabilized with reactive bio-benzoxazine surfactant from epoxidized cardanol for coatings. Eur Polym J 81:138–151. https://doi.org/10.1016/j.eurpolymj.2016.05.029

    Article  CAS  Google Scholar 

  46. Srivastava K, Rathore AK, Srivastava D (2017) Studies on the structural changes during curing of epoxy and its blend with CTBN. Spectrochim Acta Part A Mol Biomol Spectrosc 188:99–105. https://doi.org/10.1016/j.saa.2017.06.066

    Article  CAS  Google Scholar 

  47. Colombani J, Chauvet E, Amat S, Dupuy N, Gigmes D (2017) A FTIR/chemometrics approach to characterize the gamma radiation effects on iodine/epoxy-paint interactions in Nuclear Power Plants. Anal Chim Acta 960:53–62. https://doi.org/10.1016/j.aca.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  48. Vijayan P, Tanvir A, El-Gawady YH, Al-Maadeed M (2017) Cellulose nanofibers to assist the release of healing agents in epoxy coatings. Prog Org Coat 112:127–132. https://doi.org/10.1016/j.porgcoat.2017.07.008

    Article  CAS  Google Scholar 

  49. Begovi N, Blagojevic VA, Ostoji BS, Minić DM (2014) Thermally induced structural transformations of a series of palladium(II) complexes with N-heteroaromatic bidentate hydrazone ligands. Thermochim Acta 592:23–30. https://doi.org/10.1016/j.tca.2014.08.005

    Article  CAS  Google Scholar 

  50. Mina MF, Beg MDH, Islam MR, Nizam A, Alam AKMM, Yunus RM (2014) Structures and properties of injection-molded biodegradable poly(lactic acid) nanocomposites prepared with untreated and treated multiwalled carbon nanotubes. Polym Eng Sci 54:317–326. https://doi.org/10.1002/pen.23564

    Article  CAS  Google Scholar 

  51. Islam MR, Beg DH, Jamari SS (2015) Characterization of multiwalled carbon nanotube filled, palm-oil-based polyalkyds: effects of loading and in situ reaction. J Appl Polym Sci 133:42934. https://doi.org/10.1002/app.42934

    Article  CAS  Google Scholar 

  52. Bakhtiar NSA, Kuang YC, Saleh SS, Akil HM (2016) Preparation and characterization of treated MWCNT-muscovite filled epoxy nanocomposites. Procedia Chem 19:283–289. https://doi.org/10.1016/j.proche.2016.03.009

    Article  CAS  Google Scholar 

  53. Nazarenko OB, Melnikova TV, Visakh PM (2016) Thermal and mechanical characteristics of polymer composites based on epoxy resin, aluminium nanopowders and boric acid. J Phys: Conf Ser 671:012040. https://doi.org/10.1088/1742-6596/671/1/012040

    Article  CAS  Google Scholar 

  54. Norhakim N, Ahmad SHJ, Chia CH, Huang NM (2014) Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites. Sains Malays 43:603–609

    CAS  Google Scholar 

  55. Shen J, Huang W, Wu L, Hu Y, Ye M (2007) The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites. Compos Sci Technol 67:3041–3050. https://doi.org/10.1016/j.compscitech.2007.04.025

    Article  CAS  Google Scholar 

  56. Li J, Wu Z, Huang C, Liu H, Huang R, Li L (2014) Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs. Compos Sci Technol 90:166–173. https://doi.org/10.1016/j.compscitech.2013.11.009

    Article  CAS  Google Scholar 

  57. Kim MT, Rhee KY, Lee JH, Hui D, Lau AKT (2011) Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Compos Part B 42(2011):1257–1261. https://doi.org/10.1016/j.compositesb.2011.02.005

    Article  CAS  Google Scholar 

Download references

Funding

Funding was provided by Universiti Kuala Lumpur (Grant No. str17033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Remanul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumdani, M.G., Islam, M.R. & Yahaya, A.N.A. The effects of anionic surfactant on the mechanical, thermal, structure and morphological properties of epoxy–MWCNT composites. Polym. Bull. 76, 5919–5938 (2019). https://doi.org/10.1007/s00289-019-02695-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02695-1

Keywords

Navigation