Skip to main content
Log in

Polythiophene-coated multi-walled carbon nanotube-reinforced epoxy nanocomposites for enhanced mechanical, electrical and thermal properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, epoxy nanocomposites were developed via polythiophene–carbon nanotube with different loadings of 0–1.0 wt%. Polythiophene–carbon nanotube (PTh–CNT) hybrids produced using in situ chemical polymerization method and the microstructures, morphology and properties of the PTh–CNT hybrids and epoxy nanocomposites were studied using Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), transition electron microscopy (TEM), mechanical (tensile and flexural properties), electrical, dynamic mechanical thermal analysis (DMTA) and thermogravimetric techniques (TGA). Mechanical analysis demonstrated that nanocomposites containing 0.5% PTh–CNT hybrids exhibited the highest properties among all nanocomposites and showed 78% and 51% increment of Young’s modulus and strength. The fracture analysis of samples and extent of fillers dispersion were visualized by SEM and demonstrated that dispersion of hybrids within epoxy matrix related to the hybrid nature (PTh–CNT ratio) and its concentration that are the key factors affected final properties of nanocomposites. DMA thermograms represented higher modulus for all epoxy/PTh–CNT nanocomposites systems as compared to epoxy/CNT and the pristine epoxy. Electrical conductivity measurements showed that conductivity of epoxy filled nanocomposites increased up 10−1 S cm−1 for epoxy/PTh–CNT nanocomposites. In addition, epoxy/PTh–CNT nanocomposites were also compared to pure epoxy and epoxy/CNT nanocomposites and showed higher thermal stability. The PTh–CNT particles enhanced electrical, thermal and fracture toughness of nanocomposites, confirming the synergistic effect of PTh–CNT as multifunctional filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ma J, La LTB, Zaman I, Meng Q, Luong L, Ogilvie D, Kuan HC (2011) Fabrication, structure and properties of epoxy/metal nanocomposites. Macromol Mater Eng 296:465–474

    Article  CAS  Google Scholar 

  2. Chikhi N, Fellahi S, Bakar M (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Poly J 38(2):251–264

    Article  CAS  Google Scholar 

  3. Xian GJ, Walter R, Haupert F (2006) Friction and wear of epoxy/TiO2 nanocomposites: influence of additional short carbon fibers, Aramid and PTFE particles. Compos Sci Technol 66:3199–3209

    Article  CAS  Google Scholar 

  4. Rodgers RM, Mahfuz H, Rangari VK, Chisholm N, Jeelani S (2005) Infusion of SiC nanoparticles into SC-15 epoxy: an investigation of thermal and mechanical response. Macro Mater Eng 290:423–429

    Article  CAS  Google Scholar 

  5. Zhou Y, Pervin F, Biswas MA, Rangari VK, Jeelani S (2006) Fabrication and characterization of montmorillonite clay-filled SC-15 epoxy. Mater Lett 60:869–873

    Article  CAS  Google Scholar 

  6. Zhou Y, Farhana P, Rangari VKM, Jeelani S (2006) Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater Sci Eng, A 426:221–228

    Article  CAS  Google Scholar 

  7. Abacha N, Kubouchi M, Tsuda K, Sakai T (2007) Performance of epoxy-nanocomposite under corrosive environment. Express Polym Lett 1:364–369

    Article  CAS  Google Scholar 

  8. Du JH, Bai J, Cheng HM (2007) The present status and key problems of carbon nanotube based polymer composites. Express Polym Lett 1:253–273

    Article  CAS  Google Scholar 

  9. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  10. Sahoo N, Rana S, Cho J, Li L, Chan S (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  11. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214

    Article  CAS  Google Scholar 

  12. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  13. Coleman J, Khan U, Blau W, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652

    Article  CAS  Google Scholar 

  14. Zakaria MR, Akil HM, Kudus MHA, Saleh SSM (2014) Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Compos A 66:109–116

    Article  CAS  Google Scholar 

  15. Zakaria MR, Akil HM, Kudus MHA, Othman MBH (2016) Compressive properties and thermal stability of hybrid carbon nanotube-alumina filled epoxy nanocomposites. Compos B 91:235–242

    Article  CAS  Google Scholar 

  16. Cha J, Jin S, Shim JH, Park CS, Ryu HJ, Hong SH (2016) Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater Des 95:1–8

    Article  CAS  Google Scholar 

  17. Luan J, Zhang A, Zheng Y, Sun L (2012) Effect of pyrene-modified multiwalled carbon nanotubes on the properties of epoxy composites. Compos A 43(7):1032–1037

    Article  CAS  Google Scholar 

  18. Theodore M, Hosur M, Thomas J, Jeelani S (2011) Influence of functionalization on properties of MWCNT-epoxy nanocomposites. Mater Sci Eng, A 528(3):1192–1200

    Article  CAS  Google Scholar 

  19. Damian CM, Garea SA, Vasile E, Iovu H (2012) Covalent and non-covalent functionalized MWCNTs for improved thermo-mechanical properties of epoxy composites. Compos Part B Eng 43(8):3507–3515

    Article  CAS  Google Scholar 

  20. Sahoo NG, Cheng HKF, Li L, Chan SH, Judeh Z, Zhao J (2009) Specific functionalization of carbon nanotubes for advanced polymer nanocomposites. Adv Funct Mater 19(24):3962–3971

    Article  CAS  Google Scholar 

  21. Starkova O, Buschhorn ST, Mannov E, Schulte K, Aniskevich A (2013) Water transport in epoxy/MWCNT composites. Eur Polym J 49(8):2138–2148

    Article  CAS  Google Scholar 

  22. Kumar A, Ghosh PK, Yadav KL, Kumar K (2017) Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique. Compos B 113:291–299

    Article  CAS  Google Scholar 

  23. Taban N, Sharif M, Taghvaei M (2018) Study on the structure and properties of poly (methylmethacrylate)/polypyrrole-graphene oxide nanocomposites. Polym Plast Technol 58:1157–1169

    Google Scholar 

  24. Amirazodi K, Sharif M, Bahrani M (2019) Polypyrrole doped graphene oxide reinforced epoxy nanocomposite with advanced properties for coatings of mild steel. J Polym Res 26:244

    Article  CAS  Google Scholar 

  25. Moosaei R, Sharif M, Ramezannezhad A (2017) Enhancement of tensile, electrical and thermal properties of epoxy nanocomposites through chemical hybridization of polypyrrole and graphene oxide. Polym Test 60:173–186

    Article  CAS  Google Scholar 

  26. Patil YS, Salunkhe PH, Navale YH, Ubale VP, Patil VB, Maldar NN, Ghanwa AA (2018) Synthesis, characterization and conductivity study of co-polyazomethine polymer containing thiazole active ring. In: AIP conference proceedings 1989, p 020034. https://doi.org/10.1063/1.5047710

  27. Patil YS, Mahindrakar JN, Salunkhe PH, Ubale VB, Ghanwat AA (2019) Synthesis, characterization, and electrical and thermal stability of semiconducting π-conjugated polyazomethines containing a tetraphenylthiophene-oxazole unit. J Electron Mater. https://doi.org/10.1007/s11664-019-07584-x

    Article  Google Scholar 

  28. Patil YS, Salunkhe PH, Navale YH, Patil VB, Ubale VP, Ghanwat AA (2019) Tetraphenylthiophene-thiazole-based π-conjugated polyazomethines: synthesis, characterization and gas sensing application. Polym Bull 1:1. https://doi.org/10.1007/s00289-019-02856-2

    Article  CAS  Google Scholar 

  29. Zakaria MR, Akil HM, Kudus MHA, Kadarman AH (2015) Improving flexural and dielectric properties of MWCNT/epoxy nanocomposites by introducing advanced hybrid filler system. Compos Struct 13(15):50–64

    Article  Google Scholar 

  30. Frackowiak E, Jurewicz K, Delpeux S et al (2001) Nanotubular materials for supercapacitors. J Power Sources 97:822–825

    Article  Google Scholar 

  31. Dillon CA, Heben MJ (2001) Hydrogen storage using carbon adsorbents: past, present and future. Appl Phys A 2:133–142

    Article  Google Scholar 

  32. Ristein J, Stief RT, Ley L, Beyer W (1998) A comparative analysis of by infrared spectroscopy and mass selected thermal effusion. J Appl Phys 84:3836

    Article  CAS  Google Scholar 

  33. Yu GQ, Lee SH, Lee JJ (2002) Effects of thermal annealing on amorphous carbon nitride films by rf PECVD. Diam Rel Mater 11:1633–1637

    Article  CAS  Google Scholar 

  34. Misra A, Tyagi PK, Rai P, Misra DS (2007) FTIR spectroscopy of multiwalled carbon nanotubes: a simple approach to study the nitrogen doping. Nanosci Nanotechnol 7:1820–1823

    Article  CAS  Google Scholar 

  35. Gao HX, Jiang T, Han BX, Wang Y, Du JM, Liu ZM (2004) Aqueous/ionic liquid interfacial polymerization for preparing polyaniline nanoparticles. Polymer 45:3017

    Article  CAS  Google Scholar 

  36. Khezri T, Sharif M, Pourabas B (2016) Polythiophene–graphene oxide doped epoxy resin nanocomposites with enhanced electrical, mechanical and thermal properties. RSC Adv 6:93680–93693

    Article  CAS  Google Scholar 

  37. Karim MR, Lee CJ, Lee MS (2006) Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. Polym Sci A 44:5283–5290

    Article  CAS  Google Scholar 

  38. Nikje MMA, Khanmohammadi MR, Garmarudi AB, Haghshenas M (2012) Nanosilica reinforced epoxy floor coating composites: preparation and thermophysical characterization. Curr Chem Lett 1:13–20

    CAS  Google Scholar 

  39. Meng Q, Kuan H, Araby S, Kawashima N, Saber N, Wang CH, Ma J (2014) Effect of interface modification on PMMA/graphene nanocomposites. Mater Sci 49:5838

    Article  CAS  Google Scholar 

  40. Razak SIA, Muhamad II, Sharif NFA, Nayan NHM, Rahmat AR, Yahya MYA (2015) Mechanical and electrical properties of electrically conductive nanocomposites of epoxy/polyaniline-coated halloysite nanotubes. Dig J Nanomater Biostruct 10(2):377–384

    Google Scholar 

  41. Xu MJ, Ma Y, Hou MJ, Li B (2015) Synthesis of a cross-linked triazine phosphine polymer and its effect on fire retardancy, thermal degradation and moisture resistance of epoxy resins. Polym Degrad Stab 119:14–22

    Article  CAS  Google Scholar 

  42. Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly (lactic acid) composites. Carbon 48:3834–3839

    Article  CAS  Google Scholar 

  43. Jagtap SB, Ratna D (2013) Preparation and characterization of rubbery epoxy/multiwall carbon nanotubes composites using amino acid salt assisted dispersion technique. Express Polym Lett 7:329–339

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sharif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazireh, E., Sharif, M. Polythiophene-coated multi-walled carbon nanotube-reinforced epoxy nanocomposites for enhanced mechanical, electrical and thermal properties. Polym. Bull. 77, 4537–4553 (2020). https://doi.org/10.1007/s00289-019-02981-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02981-y

Keywords

Navigation