Skip to main content
Log in

Influence of nanotube content on the mechanical and thermo-mechanical behaviour of –COOH functionalized MWNTs/epoxy composites

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Functionalized multi-wall carbon nanotubes (MWNTs) with carboxylic acid group (–COOH) have been utilized for the preparation of epoxy nanocomposites. Composites were synthesized using three different wt% (0.5, 0.75 and 1) of MWNTs via the solution mixing technique followed by ultrasonication. Mechanical and thermo-mechanical properties of the fabricated composites have been experimented for the suitability of this material in a variety of structural applications. The flexural modulus, strength, hardness, impact strength and storage modulus increased upon increasing MWNTs contents. Best results have been observed in nanocomposites with 0.75 wt% nanotubes loading, which showed 101, 166 and 61% enhancement in the flexural modulus, hardness and storage modulus, respectively, compared to neat epoxy. Achievement of uniform dispersion and hence formation of improved interface between nanotubes and epoxy was the reason behind the maximum enhancement at this wt%, which is further evidenced by the fracture surface morphology obtained from microscopical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wagner H D, Lourie O, Feldman Y and Tenne R 1998 Appl. Phys. Lett. 72 188

    Article  Google Scholar 

  2. Zhou Y, Pervin F, Lewis L and Jeelani S 2008 Mater. Sci. Eng. A 475 157

    Article  Google Scholar 

  3. Mahfuz H, Zainuddin S, Parker M R, Al-Saadi T, Rangari V K and Jeelani S 2009 J. Mater. Sci. 44 1113

    Article  Google Scholar 

  4. Ma P C, Siddiqui N A, Marom G and Kim J K 2010 Compos. Part A Appl. Sci. Manuf. 41 1345

    Article  Google Scholar 

  5. Zhang X, Yan X, Guo J, Liu Z, Jiang D, He Q et al 2015 J. Mater. Chem. C 3 162

    Article  Google Scholar 

  6. Guo J, Zhang X, Gu H, Wang Y, Yan X, Ding D et al 2014 RSC Adv. 4 36560

    Article  Google Scholar 

  7. Theodore M, Hosur M, Thomas J and Jeelani S 2011 Mater. Sci. Eng. A 528 1192

    Article  Google Scholar 

  8. Liao Y H, Marietta-Tondin O, Liang Z, Zhang C and Wang B 2004 Mater. Sci. Eng. A 385 175

    Article  Google Scholar 

  9. Wang S, Liang Z, Liu T, Wang B and Zhang C 2006 Nanotechnology 17 1551

    Article  Google Scholar 

  10. Gojny F H, Wichmann M H, Köpke U, Fiedler B and Schulte K 2004 Compos. Sci. Technol. 64 2363

    Article  Google Scholar 

  11. Breton Y, Desarmot G, Salvetat J P, Delpeux S, Sinturel C, Beguin F et al 2004 Carbon 42 1027

    Article  Google Scholar 

  12. Guadagno L, De Vivo B, Di Bartolomeo A, Lamberti P, Sorrentino A, Tucci V et al 2011 Carbon 49 1919

    Article  Google Scholar 

  13. Špitalský Z, Matějka L, Šlouf M, Konyushenko E N, Kovářová J, Zemek J et al 2009 Polym. Compos. 30 1378

    Article  Google Scholar 

  14. Shen J, Huang W, Wu L, Hu Y and Ye M 2007 Compos. Sci. Technol. 67 3041

    Article  Google Scholar 

  15. Chen X, Wang J, Lin M, Zhong W, Feng T, Chen X et al 2008 Mater. Sci. Eng. A 492 236

  16. Salam M B A, Hosur M V, Zainuddin S and Jeelani S 2013 Open J. Comp. Mater. 3 1

    Google Scholar 

  17. Zhou W, Wang B, Zheng Y, Zhu Y, Wang J and Qi N 2008 Chem. Phys. Chem. 9 1046

    Article  Google Scholar 

  18. Yaping Z, Aibo Z, Qinghua C, Jiaoxia Z and Rongchang N 2006 Mater. Sci. Eng. A 435 145

    Article  Google Scholar 

  19. Ma P C, Kim J K and Tang B Z 2007 Compos. Sci. Technol. 67 2965

    Article  Google Scholar 

  20. Jagtap S B and Ratna D 2013 Express Polym. Lett. 7 329

    Article  Google Scholar 

  21. Lee J H, Rhee K Y and Park S J 2010 Mater. Sci. Eng. A 527 6838

    Article  Google Scholar 

  22. Bal S and Saha S 2014 High Perform. Polym. 26 953

    Article  Google Scholar 

  23. Li Q, Xue Q, Hao L, Gao X and Zheng Q 2008 Compos. Sci. Technol. 68 2290

    Article  Google Scholar 

  24. Geng Y, Liu M Y, Li J, Shi X M and Kim J K 2008 Compos: Part A: Appl. Sci. Manuf. 39 1876

    Article  Google Scholar 

  25. Yang K, Gu M, Guo Y, Pan X and Mu G 2009 Carbon 47 1723

    Article  Google Scholar 

  26. Shen J, Huang W, Wu L, Hu Y and Ye M 2007 Compos: Part A: Appl. Sci. Manuf. 38 1331

    Article  Google Scholar 

  27. Ma P C, Mo S Y, Tang B Z and Kim J K 2010 Carbon 48 1824

    Article  Google Scholar 

  28. Hsu S H, Wu M C, Chen S, Chuang C M, Lin S H and Su W F 2012 Carbon 50 896

    Article  Google Scholar 

  29. Zafar A, Bertocco F, Schjødt-Thomsen J and Rauhe J C 2012 Compos. Sci. Technol. 72 656

    Article  Google Scholar 

  30. Hernández-Pérez A, Avilés F, May-Pat A, Valadez-González A, Herrera-Franco P J and Bartolo-Pérez P 2008 Compos. Sci. Technol. 68 1422

    Article  Google Scholar 

  31. Goertzen W K and Kessler M R 2007 Compos: Part B: Eng. 38 1

    Article  Google Scholar 

  32. Hatakeyama T and Quinn F 1999 Thermal analysis: fundamentals and application to polymer science, 2nd edn (Chichester: John Wiley & Sons) 131

  33. Li G, Lee-Sullivan P and Thring R W 2000 J. Therm. Anal. Calorim. 60 377

    Article  Google Scholar 

  34. Velasco-Santos C, Martínez-Hernández A L, Fisher F T, Ruoff R and Castano V M 2003 Chem. Mater. 15 4470

    Article  Google Scholar 

  35. Gojny F H and Schulte K 2004 Compos. Sci. Technol. 64 2303

    Article  Google Scholar 

  36. Xiao K Q, Zhang L C and Zarudi I 2007 Compos. Sci. Technol. 67 177

    Article  Google Scholar 

  37. Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P and Thompson G 2007 Polymer 48 5662

    Article  Google Scholar 

  38. Bal S 2010 Mater. Des. 31 2406

    Article  Google Scholar 

  39. Ayatollahi M R, Shadlou S and Shokrieh M M 2011 Eng. Fract. Mech. 78 2620

    Article  Google Scholar 

  40. Jen Y M and Wang Y C 2012 Compos: Part B 43 1687

    Article  Google Scholar 

  41. Zhou Y X, Wu P X, Cheng Z Y, Ingram J and Jeelani S 2008 Express Polym. Lett. 2 40

    Article  Google Scholar 

  42. Ramana G V, Padya B, Kumar R N, Prabhakar K V and Jain P K 2010 J. Eng. Mater. Sci17 331

    Google Scholar 

Download references

Acknowledgements

We cordially thank the Naval Research Board, New Delhi, for providing the financial support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Bal, S. Influence of nanotube content on the mechanical and thermo-mechanical behaviour of –COOH functionalized MWNTs/epoxy composites. Bull Mater Sci 40, 945–956 (2017). https://doi.org/10.1007/s12034-017-1433-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1433-x

Keywords

Navigation