Skip to main content
Log in

Synthesis and enhanced microwave absorption properties of urchin-like polyaniline/Ni0.4Zn0.4Co0.2Fe2O4 composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel polyaniline/Ni0.4Zn0.4Co0.2Fe2O4 (PANI/NZCF) composite was synthesized by in situ polymerization of aniline in the presence of NZCF. The studies of structural, morphological and surface chemical bonding states were performed by X-ray diffraction, scanning electron microscopy and Fourier transform-infrared spectrometry, respectively. It was found that greater reflection loss and wider absorption bandwidths were possible by adjusting the mass ratio of NZCF to PANI on account of electromagnetic loss and impedance matching. The highest reflection loss (RL) was − 40 dB at the frequency 15.8 GHz for the PANI/NZCF composite when the effective absorption frequency at which RL < − 10 dB was in the range of 13.5–18 GHz with an absorber thickness of 1.7 mm at the mass ratio of 2:1. These effects are due to the urchin-like structure when compared to traditional encapsulation structures. Therefore, the above findings show that the PANI/NZCF composite with negligible thickness and strong absorption properties has great potential in the application of electromagnetic shielding and microwave absorbing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. He Q, Yuan T, Zhang X, Yan X, Guo J, Ding D, Khan MA, Young DP, Khasanov A, Luo Z, Liu J, Shen TD, Liu X, Wei S, Guo Z (2014) Electromagnetic field absorbing polypropylene nanocomposites with tuned permittivity and permeability by nanoiron and carbon nanotubes. J Phys Chem C 118:24784–24796. https://doi.org/10.1021/jp507975r

    Article  CAS  Google Scholar 

  2. Song Q, Zhang ZJ (2012) Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. J Am Chem Soc 134:10182–10190. https://doi.org/10.1021/ja302856z

    Article  CAS  PubMed  Google Scholar 

  3. Sarkar D, Bhattacharya A, Nandy P, Das S (2014) Enhanced broadband microwave reflection loss of carbon nanotube ensheathed Ni–Zn–Co-ferrite magnetic nanoparticles. Mater Lett 120:259–262. https://doi.org/10.1016/j.matlet.2014.01.089

    Article  CAS  Google Scholar 

  4. Xie J, Han M, Chen L, Kuang R, Deng L (2007) Microwave-absorbing properties of NiCoZn spinel ferrites. J Magn Magn Mater 314:37–42. https://doi.org/10.1016/j.jmmm.2007.02.124

    Article  CAS  Google Scholar 

  5. Srinivas C, Meena SS, Tirupanyam BV, Sastry DL, Yusuf SM (2013) Structural and mossbauer spectroscopic studies of heat-treated NixZn1−xFe2O4 ferrite nanoparticles. In: Chauhan AK, Murli C, Gadkari SC (eds) AIP conference proceedings, vol 1512, pp 338–339. https://doi.org/10.1063/1.4791049

  6. Tang J, Ma L, Tian N, Gan M, Xu F, Zeng J, Tu Y (2014) Synthesis and electromagnetic properties of PANI/PVP/CIP core-shell composites. Mater Sci Eng B-Adv 186:26–32. https://doi.org/10.1016/j.mseb.2014.02.003

    Article  CAS  Google Scholar 

  7. Kuo-Hui W, Fu-Chu Y (2007) Synthesis and characterization of organically modified silicate/NiZn ferrite hybrid coatings. Acta Mater 55:507–515. https://doi.org/10.1016/j.actamat.2006.08.041

    Article  CAS  Google Scholar 

  8. Bueno AR, Gregori ML, Nobrega MCS (2007) Effect of Mn substitution on the microstructure and magnetic properties of Ni0.50-xZn0.50-xMn2xFe2O4 ferrite prepared by the citrate-nitrate precursor method. Mater Chem Phys 105:229–233. https://doi.org/10.1016/j.matchemphys.2007.04.047

    Article  CAS  Google Scholar 

  9. Liu P, Li L, Yao Z, Zhou J, Du M, Yao T (2016) Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li0.435Zn0.195Fe2.37O4 nanocomposites. J Mater Sci-Mater El 27:7776–7787. https://doi.org/10.1007/s10854-016-4766-0

    Article  CAS  Google Scholar 

  10. Madhu BJ, Gurusiddesh M, Kiran T, Shruthi B, Jayanna HS (2016) Structural, dielectric, ac conductivity and electromagnetic shielding properties of polyaniline/Ni0.5Zn0.5Fe2O4 composites. J Mater Sci-Mater El 27:7760–7766. https://doi.org/10.1007/s10854-016-4764-2

    Article  CAS  Google Scholar 

  11. Liu P, Yao Z, Zhou J, Yang Z, Kong LB (2016) Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J Mater Chem C 4:9738–9749. https://doi.org/10.1039/c6tc03518c

    Article  CAS  Google Scholar 

  12. Du M, Yao Z, Zhou J, Liu P, Yao T, Yao R (2017) Design of efficient microwave absorbers based on multi-layered polyaniline nanofibers and polyaniline nanofibers/Li0.35Zn0.3Fe2.35O4 nanocomposite. Synth Met 223:49–57. https://doi.org/10.1016/j.synthmet.2016.11.039

    Article  CAS  Google Scholar 

  13. Basavaraja C, Kim WJ, Kim DG, Huh DS (2012) Microwave absorption studies of polyaniline nanocomposites encapsulating gold nanoparticles on the surface of reduced graphene oxide in the presence of 2-naphthalene sulfonic acid. Colloid Polym Sci 290:829–838. https://doi.org/10.1007/s00396-012-2596-z

    Article  CAS  Google Scholar 

  14. Stejskal J, Sapurina I, Prokes J, Zemek J (1999) In-situ polymerized polyaniline films. Synth Met 105:195–202. https://doi.org/10.1016/S0379-6779(99)00105-8

    Article  CAS  Google Scholar 

  15. Li GJ, Yan SF, Zhou EL, Chen YM (2006) Preparation of magnetic and conductive NiZn ferrite-polyaniline nanocomposites with core-shell structure. Colloid Surf A 276:40–44. https://doi.org/10.1016/j.colsurfa.2005.10.010

    Article  CAS  Google Scholar 

  16. Mi H, Zhang X, Xu Y, Xiao F (2010) Synthesis, characterization and electrochemical behavior of polypyrrole/carbon nanotube composites using organometallic-functionalized carbon nanotubes. Appl Surf Sci 256:2284–2288. https://doi.org/10.1016/j.apsusc.2009.10.053

    Article  CAS  Google Scholar 

  17. Konicki W, Sibera D, Mijowska E, Lendzion-Bielun Z, Narkiewicz U (2013) Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J Colloid Interf Sci 398:152–160. https://doi.org/10.1016/j.jcis.2013.02.021

    Article  CAS  Google Scholar 

  18. Liv P, Yao Z, Zhou J (2015) Preparation of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites and their excellent microwave absorption properties. Ceram Int 41:13409–13416. https://doi.org/10.1016/j.ceramint.2015.07.129

    Article  CAS  Google Scholar 

  19. Ting T, Wu K (2010) Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. J Magn Magn Mater 322:2160–2166. https://doi.org/10.1016/j.jmmm.2010.02.002

    Article  CAS  Google Scholar 

  20. Sozeri H, Kurtan U, Topkaya R, Baykal A, Toprak MS (2013) Polyaniline (PANI)-Co0.5Mn0.5Fe2O4 nanocomposite: synthesis, characterization and magnetic properties evaluation. Ceram Int 39:5137–5143. https://doi.org/10.1016/j.ceramint.2012.12.009

    Article  CAS  Google Scholar 

  21. Wang C, Shen Y, Wang X, Zhang H, Xie A (2013) Synthesis of novel NiZn-ferrite/Polyaniline nanocomposites and their microwave absorption properties. Mat Sci Semicon Proc 16:77–82. https://doi.org/10.1016/j.mssp.2012.06.015

    Article  CAS  Google Scholar 

  22. Ben Ghzaiel T, Dhaoui W, Schoenstein F, Talbot P, Mazaleyrat F (2017) Substitution effect of Me=Al, Bi, Cr and Mn to the microwave properties of polyaniline/BaMeFe11O19 for absorbing electromagnetic waves. J Alloy Compd 692:774–786. https://doi.org/10.1016/j.jallcom.2016.09.075

    Article  CAS  Google Scholar 

  23. Khairy M (2014) Polyaniline-Zn0.2Mn0.8 Fe2O4 ferrite core-shell composite: preparation, characterization and properties. J Alloy Compd 608:283–291. https://doi.org/10.1016/j.jallcom.2014.04.130

    Article  CAS  Google Scholar 

  24. Du Y, Liu W, Qiang R, Wang Y, Han X, Ma J, Xu P (2014) Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Inter 6:12997–13006. https://doi.org/10.1021/am502910d

    Article  CAS  Google Scholar 

  25. Wang Y, Du Y, Xu P, Qiang R, Han X (2017) Recent advances in conjugated polymer-based microwave absorbing materials. Polymers-Basel. https://doi.org/10.3390/polym9010029

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang H, Ye T, Lin Y, Liu M (2015) Exchange coupling behavior and microwave absorbing property of the hard/soft (BaFe12O19/Y3Fe5O12) ferrites based on polyaniline. Synth Met 210:245–250. https://doi.org/10.1016/j.synthmet.2015.10.006

    Article  CAS  Google Scholar 

  27. Wang J, Or SW, Leung CM (2015) Effect of shell permutation on electromagnetic properties of ZnFeO4/(PANI, SiO2) core/double-shell nanostructured disks. J Appl Phys. https://doi.org/10.1063/1.4918759

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shi X, Cao M, Yuan J, Fang X (2009) Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl Phys Lett. https://doi.org/10.1063/1.3250170

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim SS, Kim ST, Yoon YC, Lee KS (2005) Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J Appl Phys. https://doi.org/10.1063/1.1852371

    Article  Google Scholar 

  30. Zhang XF, Guan PF, Dong XL (2010) Multidielectric polarizations in the core/shell Co/graphite nanoparticles. Appl Phys Lett. https://doi.org/10.1063/1.3446868

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51672129, 51702158 and 11502110), Natural Science Foundation of Jiangsu Province of China (BK20150737), the Fundamental Research Funds for the Central Universities (NS2017036) and Hong Kong Scholars Program. The authors thank Dr. Azhar Ali Haidry, foreign expert in functional materials and associate professor in our college, for his valuable suggestions and revision to improve the English of the manuscript. The authors also thank Dr. Shasha Zhang for her suggestion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengjun Yao or Jintang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Yao, Z., Lin, H. et al. Synthesis and enhanced microwave absorption properties of urchin-like polyaniline/Ni0.4Zn0.4Co0.2Fe2O4 composites. Polym. Bull. 76, 3113–3125 (2019). https://doi.org/10.1007/s00289-018-2541-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2541-5

Keywords

Navigation