Skip to main content
Log in

Structural, dielectric, ac conductivity and electromagnetic shielding properties of polyaniline/Ni0.5Zn0.5Fe2O4 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A conducting polymer, polyaniline (PANI)/Ni0.5Zn0.5Fe2O4 composites with high dielectric absorbing properties and electromagnetic shielding effectiveness at low frequencies were successfully synthesized through a simple in situ emulsion polymerization. PANI was doped with hydrochloric acid to improve its electrical properties and interactions with ferrite particles. PANI/Ni0.5Zn0.5Fe2O4 composites were characterized by X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. Frequency dependence of dielectric and ac conductivity (σac) studies have been undertaken on the PANI/Ni0.5Zn0.5Fe2O4 composites in the frequency range 50 Hz–5 MHz. The electrical conduction mechanism in the PANI/Ni0.5Zn0.5Fe2O4 is found to be in accordance with the electron hopping model. Further, frequency dependence of electromagnetic interference (EMI) shielding effectiveness (SE) is studied. The EMI shielding effectiveness is found to decrease with an increase in the frequency. The maximum value 55.14 dB of SE at 50 Hz was obtained at room temperature for PANI/Ni0.5Zn0.5Fe2O4 composites in the 50 Hz–5 MHz frequency range. PANI/Ni0.5Zn0.5Fe2O4 composites were demonstrated as a promising functional material for the absorbing of electromagnetic waves at low frequencies because of a large amount of dipole polarizations in the polymer backbone and at the interfaces of the Ni–Zn ferrite particles and PANI matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.F. Colaneri, L.W. Shacklette, IEEE Trans. Instrum. Meas. 41, 291 (1992)

    Article  Google Scholar 

  2. D.D.L. Chung, J. Mater. Eng. Perform. 9(3), 350 (2000)

    Article  Google Scholar 

  3. S. Geetha, K.K. Satheesh Kumar, C.R. Rao, M. Vijayan, D.C. Trivedi, J. Appl. Polym. Sci. 112, 2073 (2009)

    Article  Google Scholar 

  4. J. Ma, K. Wang, M. Zhan, RSC Adv. 5, 65283 (2015)

    Article  Google Scholar 

  5. F.X. Qin, H.X. Peng, N. Pankratov, M.H. Phan, L.V. Panina, M. Ipatov, V. Zhukova, A. Zhukov, J. Gonzalez, J. Appl. Phys. 108, 044510 (2010)

    Article  Google Scholar 

  6. V. Panwar, J.-O. Park, S.-H. Park, S. Kumar, R.M. Mehra, J. Appl. Polym. Sci. 115, 1306 (2010)

    Article  Google Scholar 

  7. W. Wang, S.P. Gumfekar, Q. Jiao, B. Zhao, J. Mater. Chem. C 1, 2851 (2013)

    Article  Google Scholar 

  8. B.J. Madhu, S.T. Ashwini, B. Shruthi, B.S. Divyashree, A. Manjunath, H.S. Jayanna, Mater. Sci. Eng., B 186, 1 (2014)

    Article  Google Scholar 

  9. Z.W. Li, Z.H. Yang, L.B. Kong, Procedia Eng. 75, 19 (2014)

    Article  Google Scholar 

  10. B.J. Madhu, K. Bindu, S. Hamsa, C.P. Sowmya, B. Shruthi, A. Manjunath, G.H. Virupakshappa, in IEEE conference Publications, International Conference on Nano Science, Engineering and Technology (ICONSET), 373 (2011). doi:10.1109/ICONSET.2011.6167984

  11. B.J. Madhu, S. Razikha Banu, M. Kavya, B. Shruthi, M.S. Vasanthkumar, T.V. Sannamma, M. Surendra, in IEEE Conference Publications, International Conference on Nano Science, Technology and Societal Implications (NSTSI11), 1 (2011). doi:10.1109/NSTSI.2011.6111787

  12. B.J. Madhu, M. Kavya, S. Razika Banu, B. Shruthi, C.P. Sowmya, H.S. Jayanna, Adv. Mater. Res. 584, 295 (2012)

    Article  Google Scholar 

  13. B.J. Madhu, V. Jagadeesha Angadi, H. Mallikarjuna, S.O. Manjunatha, B. Shruthi, R. Madhu Kumar, Adv. Mater. Res. 584, 299 (2012)

    Article  Google Scholar 

  14. B.J. Madhu, B.N. Rashmi, A. Banu, G.A. Seema, B. Shruthi, H.S. Jayanna, AIP Conf. Proc. 1512, 1008 (2013)

    Article  Google Scholar 

  15. M.A. Rahman, P. Kumar, D. Park, Y. Shim, Sensors 8, 118 (2008)

    Article  Google Scholar 

  16. N. Gandhi, K. Singh, A. Ohlan, D.P. Singh, S.K. Dhawan, Compos. Sci. Technol. 71, 1754 (2011)

    Article  Google Scholar 

  17. J. Azadmanjiri, Mater. Chem. Phys. 109, 109 (2008)

    Article  Google Scholar 

  18. S.B. Kondawar, A.I. Nandapure, B.I. Nandapure, Adv. Math. Lett. 5(6), 341 (2014)

    Google Scholar 

  19. H.I. Hsiang, C.C. Chen, J.Y. Tsai, Appl. Surf. Sci. 245, 252 (2005)

    Article  Google Scholar 

  20. A.A. Farghali, M. Moussa, M.H. Khedr, J. Alloys Compd. 499, 98 (2010)

    Article  Google Scholar 

  21. M. Guy, Y. Jin, S. Woen, S. Soon, Synth. Met. 124, 342 (2001)

    Google Scholar 

  22. H. Qiu, X. Feng, L. Li, C. Xiang, H. Qian, Mater. Chem. Phys. 124, 1039 (2010)

    Article  Google Scholar 

  23. J. Jiang, L. Li, F. Xu, J. Phys. Chem. Solids 68, 1656 (2007)

    Article  Google Scholar 

  24. K.W. Wagner, Am. Phys. 40, 317 (1973)

    Google Scholar 

  25. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  26. N. Rezlescu, E. Rezlescu, Phys. Status Solidi A 23, 575 (1974)

    Article  Google Scholar 

  27. L.I. Rabinkin, Z.I. Novika, Ferrites, Minsk (1960), p. 146

  28. K. Iwauchi, Jpn. J. Appl. Phys. 10, 1520 (1971)

    Article  Google Scholar 

  29. S.N. Dolia, P.K. Sharma, M.S. Dhawana, S. Kumar, A.S. Prasad, A. Samariya, Appl. Surf. Sci. 258, 4207 (2012)

    Article  Google Scholar 

  30. M. George, S.S. Nair, A.M. John, P.A. Joy, M.R. Anantharaman, J. Phys. D Appl. Phys. 39, 900 (2006)

    Article  Google Scholar 

  31. K.M. Batoo, M.S. Ansari, Nanoscale Res. Lett. 7, 112 (2012)

    Article  Google Scholar 

  32. M. Younas, M. Nadeem, M. Atif, R. Grossinger, J. Appl. Phys. 109, 093704 (2011)

    Article  Google Scholar 

  33. M.J. Paligova, V.P. Saha, V. Kresaleka, J. Stejskal, O. Quadrat, Phys. A 335, 421 (2004)

    Article  Google Scholar 

  34. A. Ohlan, K. Singh, A. Chandra, V.N. Singh, S.K. Dhawan, J. Appl. Phys. 106, 044305 (2009)

    Article  Google Scholar 

  35. H.T. Guan, S.H. Liu, Y.P. Duan, J. Cheng, Cem. Concr. Compos. 28, 467 (2006)

    Article  Google Scholar 

  36. N. Li, Y. Huang, F. Du, X.B. He, X. Lin, H.J. GaO, Y.F. Ma, F.F. Li, Y.S. Chen, P.C. Eklund, Nano Lett. 6, 1141 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge the STIC, CUSAT, Cochin for XRD, SEM, TEM and TG analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Madhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhu, B.J., Gurusiddesh, M., Kiran, T. et al. Structural, dielectric, ac conductivity and electromagnetic shielding properties of polyaniline/Ni0.5Zn0.5Fe2O4 composites. J Mater Sci: Mater Electron 27, 7760–7766 (2016). https://doi.org/10.1007/s10854-016-4764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4764-2

Keywords

Navigation