Skip to main content
Log in

One-pot synthesis of tetramethyl biphenyl backboned hyperbranched epoxy resin as an efficient toughening modifier for two epoxy curing systems

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this article, an approach to toughen epoxy thermosets with hyperbranched epoxy resin is presented. First, three tetramethyl biphenyl backboned hyperbranched epoxy resins (BPHBEs) were synthesized through a simple one-pot A2 + B3 polycondensation reaction. Then, they were incorporated into epoxy/anhydride and epoxy/jeffamine curing systems, respectively. The curing behavior was investigated by differential scanning calorimetry, which reveals that the adding of BPHBE to the formulation would not much affect the curing process. The influence of BPHBE on the mechanical and thermomechanical properties of both epoxy/anhydride and epoxy/jeffamine systems was studied. The results show that BPHBE can significantly toughen both two systems without much trade-offs in their strength, modulus and Tg. While the initial decomposition temperature of the cured thermosets slightly drops. Owing to the miscible backbone structure and terminal epoxy groups, no phase separation was observed in SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mohan P (2013) A critical review: the modification, properties, and applications of epoxy resins. Polym Plast Technol Eng 52:107–125. https://doi.org/10.1080/03602559.2012.727057

    Article  CAS  Google Scholar 

  2. Jin F-L, Li X, Park S-J (2015) Synthesis and application of epoxy resins: a review. J Ind Eng Chem 29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026

    Article  CAS  Google Scholar 

  3. Bagheri R, Marouf BT, Pearson RA (2009) Rubber-toughened epoxies: a critical review. Polym Rev 49:201–225. https://doi.org/10.1080/15583720903048227

    Article  CAS  Google Scholar 

  4. Fei X, Wei W, Zhao F et al (2017) Efficient toughening of epoxy-anhydride thermosets with a biobased tannic acid derivative. ACS Sustain Chem Eng 5:596–603. https://doi.org/10.1021/acssuschemeng.6b01967

    Article  CAS  Google Scholar 

  5. Ye W, Wei W, Fei X et al (2017) Six-arm star-shaped polymer with cyclophosphazene core and poly(ε-caprolactone) arms as modifier of epoxy thermosets. J Appl Polym Sci 134:1–9. https://doi.org/10.1002/app.44384

    Article  CAS  Google Scholar 

  6. Chonkaew W, Sombatsompop N, Brostow W (2013) High impact strength and low wear of epoxy modified by a combination of liquid carboxyl terminated poly (butadiene-co-acrylonitrile) rubber and organoclay. Eur Polym J 49:1461–1470. https://doi.org/10.1016/j.eurpolymj.2013.03.022

    Article  CAS  Google Scholar 

  7. Rico M, López J, Montero B, Bellas R (2012) Phase separation and morphology development in a thermoplastic-modified toughened epoxy. Eur Polym J 48:1660–1673. https://doi.org/10.1016/j.eurpolymj.2012.07.007

    Article  CAS  Google Scholar 

  8. Jiang T, Kuila T, Kim NH, Lee JH (2014) Effects of surface-modified silica nanoparticles attached graphene oxide using isocyanate-terminated flexible polymer chains on the mechanical properties of epoxy composites. J Mater Chem A 2:10557. https://doi.org/10.1039/c4ta00584h

    Article  CAS  Google Scholar 

  9. Fei X, Zhao F, Wei W et al (2016) Tannic acid as a bio-based modifier of epoxy/anhydride thermosets. Polymers (Basel) 8:314. https://doi.org/10.3390/polym8090314

    Article  CAS  Google Scholar 

  10. Gui D, Miao X, Zeng G, Liu J (2013) Preparation and thermal stability of amine-terminated polyesterimide modified epoxy resin. J Mater Sci 24:4614–4620. https://doi.org/10.1007/s10854-013-1452-3

    Article  CAS  Google Scholar 

  11. Li T, Qin H, Liu Y et al (2012) Hyperbranched polyester as additives in filled and unfilled epoxy-novolac systems. Polymer 53:5864–5872. https://doi.org/10.1016/j.polymer.2012.10.028

    Article  CAS  Google Scholar 

  12. Li J, Xiang Y, Zheng S (2016) Hyperbranched block copolymer from AB2 macromonomer: synthesis and its reaction-induced microphase separation in epoxy thermosets. J Polym Sci Part A Polym Chem 54:368–380. https://doi.org/10.1002/pola.27784

    Article  CAS  Google Scholar 

  13. Flores M, Fernández-Francos X, Ferrando F et al (2012) Efficient impact resistance improvement of epoxy/anhydride thermosets by adding hyperbranched polyesters partially modified with undecenoyl chains. Polymer 53:5232–5241. https://doi.org/10.1016/j.polymer.2012.09.031

    Article  CAS  Google Scholar 

  14. Zhang D, Liang E, Li T et al (2013) The effect of molecular weight of hyperbranched epoxy resins with a silicone skeleton on performance. RSC Adv 3:9522–9529. https://doi.org/10.1039/c3ra00023k

    Article  CAS  Google Scholar 

  15. Zou Z, Liu X, Wu Y et al (2016) Hyperbranched polyurethane as a highly efficient toughener in epoxy thermosets with reaction-induced microphase separation. RSC Adv 6:18060–18070. https://doi.org/10.1039/C5RA21168A

    Article  CAS  Google Scholar 

  16. Jin Q, Misasi JM, Wiggins JS, Morgan SE (2015) Simultaneous reinforcement and toughness improvement in an aromatic epoxy network with an aliphatic hyperbranched epoxy modifier. Polymer 73:174–182. https://doi.org/10.1016/j.polymer.2015.07.031

    Article  CAS  Google Scholar 

  17. Fernández-Francos X, Foix D, Serra À et al (2010) Novel thermosets based on DGEBA and hyperbranched polymers modified with vinyl and epoxy end groups. React Funct Polym 70:798–806. https://doi.org/10.1016/j.reactfunctpolym.2010.07.008

    Article  CAS  Google Scholar 

  18. Luo L, Meng Y, Qiu T, Li X (2013) An epoxy-ended hyperbranched polymer as a new modifier for toughening and reinforcing in epoxy resin. J Appl Polym Sci 130:1064–1073. https://doi.org/10.1002/app.39257

    Article  CAS  Google Scholar 

  19. Zhang D, Jia D (2006) Toughness and strength improvement of diglycidyl ether of bisphenol-A by low viscosity liquid hyperbranched epoxy resin. J Appl Polym Sci 101:2504–2511. https://doi.org/10.1002/app.23760

    Article  CAS  Google Scholar 

  20. Miao X, Meng Y, Li X (2015) A novel all-purpose epoxy-terminated hyperbranched polyether sulphone toughener for an epoxy/amine system. Polymer 60:88–95. https://doi.org/10.1016/j.polymer.2015.01.034

    Article  CAS  Google Scholar 

  21. Jiang H, Wang R, Farhan S, Zheng S (2015) Improved thermosets obtained from diglycidyl ether of bisphenol A/4,4′-diaminodiphenylsulfone based on a new epoxy-terminated hyperbranched polymer. Polym Int 64:1794–1800. https://doi.org/10.1002/pi.4982

    Article  CAS  Google Scholar 

  22. Fu T, Zhang G, Zhong S et al (2007) Reaction kinetics, thermal properties of tetramethyl biphenyl epoxy resin cured with aromatic diamine. J Appl Polym Sci 105:2611–2620. https://doi.org/10.1002/app.26340

    Article  CAS  Google Scholar 

  23. Su W-FA, Chuang C-M (2002) Effects of chemical structure changes on curing reactions and thermal properties of cyanate ester-cured rigid-rod epoxy resins. J Appl Polym Sci 85:2419–2422. https://doi.org/10.1002/app.10887

    Article  CAS  Google Scholar 

  24. De B, Karak N (2015) Ultralow dielectric, high performing hyperbranched epoxy thermosets: synthesis, characterization and property evaluation. RSC Adv 5:35080–35088. https://doi.org/10.1039/C5RA04248H

    Article  CAS  Google Scholar 

  25. Barua S, Dutta G, Karak N (2013) Glycerol based tough hyperbranched epoxy: synthesis, statistical optimization and property evaluation. Chem Eng Sci 95:138–147. https://doi.org/10.1016/j.ces.2013.03.026

    Article  CAS  Google Scholar 

  26. De B, Karak N (2013) Novel high performance tough hyperbranched epoxy by an A2 + B3 polycondensation reaction. J Mater Chem A. https://doi.org/10.1039/c2ta00011c

    Article  Google Scholar 

  27. Luo L, Meng Y, Qiu T et al (2013) Dielectric and mechanical properties of diglycidyl ether of bisphenol a modified by a new fluoro-terminated hyperbranched poly(phenylene oxide). Polym Compos 34:1051–1060. https://doi.org/10.1002/pc.22512

    Article  CAS  Google Scholar 

  28. Pan L, Lu S, Xiao X et al (2015) Enhanced mechanical and thermal properties of epoxy with hyperbranched polyester grafted perylene diimide. RSC Adv 5:3177–3186. https://doi.org/10.1039/C4RA13609H

    Article  CAS  Google Scholar 

  29. Liu T, Nie Y, Chen R et al (2015) Hyperbranched polyether as an all-purpose epoxy modifier: controlled synthesis and toughening mechanisms. J Mater Chem A 3:1188–1198. https://doi.org/10.1039/C4TA04841E

    Article  CAS  Google Scholar 

  30. Miao X, Meng Y, Li X (2015) Epoxide-terminated hyperbranched polyether sulphone as triple enhancement modifier for DGEBA. J Appl Polym Sci. https://doi.org/10.1002/app.41910

    Article  Google Scholar 

  31. Le QH, Kuan HC, Bin Dai J et al (2010) Structure-property relations of 55 nm particle-toughened epoxy. Polymer 51:4867–4879. https://doi.org/10.1016/j.polymer.2010.08.038

    Article  CAS  Google Scholar 

  32. Luo X, Mather PT (2010) Triple-shape polymeric composites (TSPCs). Adv Funct Mater 20:2649–2656. https://doi.org/10.1002/adfm.201000052

    Article  CAS  Google Scholar 

  33. Xie T, Rousseau IA (2009) Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50:1852–1856. https://doi.org/10.1016/j.polymer.2009.02.035

    Article  CAS  Google Scholar 

  34. Zheng N, Fang G, Cao Z et al (2015) High strain epoxy shape memory polymer. Polym Chem 6:3046–3053. https://doi.org/10.1039/C5PY00172B

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Enterprise-University-Research Prospective Program, Jiangsu Province (BY2015019-08) and MOE & SAFEA for the 111 Project (B13025).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Xiaoya Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, X., Tang, Y., Wei, W. et al. One-pot synthesis of tetramethyl biphenyl backboned hyperbranched epoxy resin as an efficient toughening modifier for two epoxy curing systems. Polym. Bull. 75, 4571–4586 (2018). https://doi.org/10.1007/s00289-018-2269-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2269-2

Keywords

Navigation